A 220–320-GHz Vector-Sum Phase Shifter Using Single Gilbert-Cell Structure With Lossy Output Matching

This paper presents a wideband vector-sum phase shifter (VSPS) that operates over the entire WR-3 band (220-320 GHz). Compared to conventional VSPSs with double Gilbert cells, the proposed phase shifter employs a single Gilbert-cell structure for vector modulation. This reduces the output current combining ratio from 8:2 to 4:2, and boosts the impedance at the combining node, thus facilitating wideband output matching at upper millimeter-wave and terahertz bands. The simplified structure leads to a reduction in dc power consumption and chip area without sacrificing the 360 ° phase-shifting property. Lossy matching is applied at the Gilbert-cell output to further increase bandwidth and stability at the expense of relatively high loss. The phase shifter is implemented using a 250-nm InP DHBT technology that provides f T and f max exceeding 370 and 650 GHz, respectively. The measurements exhibit a wideband phase shift with continuous 360 ° coverage and average insertion loss ranging from 11.8 to 15.6 dB for the entire WR-3 band. The root mean square amplitude and phase error among different phase states are less than 1.2 dB and 10.2 °, respectively. The input-referred 1-dB compression is measured at 0.7 dBm on average. The dc power consumption is 21.8-42.0 mW at different phase states.

[1]  H Zirath,et al.  Single-Chip 220-GHz Active Heterodyne Receiver and Transmitter MMICs With On-Chip Integrated Antenna , 2011, IEEE Transactions on Microwave Theory and Techniques.

[2]  M. Urteaga,et al.  A 220 GHz InP HBT Solid-State Power Amplifier MMIC with 90mW POUT at 8.2dB Compressed Gain , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[3]  Chia-Chan Chang,et al.  A V-/W-band 0.18-μm CMOS phase shifter MMIC with 180°-300° phase tuning range , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[4]  Hangnan Yu,et al.  300 GHz vector-sum phase shifter using InP DHBT amplifiers , 2013 .

[5]  K. Schmalz,et al.  245-GHz LNA, Mixer, and Subharmonic Receiver in SiGe Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[6]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[7]  R. Mongia RF and microwave coupled-line circuits , 1999 .

[8]  Noriaki Kaneda,et al.  A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link , 2013, IEEE Journal of Solid-State Circuits.

[9]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.

[10]  J. Wells,et al.  Faster than fiber: The future of multi-G/s wireless , 2009, IEEE Microwave Magazine.

[11]  Thomas Schneider,et al.  Link Budget Analysis for Terahertz Fixed Wireless Links , 2012, IEEE Transactions on Terahertz Science and Technology.

[12]  Z. Griffith,et al.  InP HBT Integrated Circuit Technology for Terahertz Frequencies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[13]  N. Kukutsu,et al.  Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz , 2013, IEEE Transactions on Terahertz Science and Technology.

[14]  Ali M. Niknejad,et al.  A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[15]  U. R. Pfeiffer,et al.  Subharmonic 220- and 320-GHz SiGe HBT Receiver Front-Ends , 2012, IEEE Transactions on Microwave Theory and Techniques.

[16]  Jui-Chih Kao,et al.  A 57-66 GHz Vector Sum Phase Shifter with Low Phase/Amplitude Error Using a Wilkinson Power Divider with LHTL/RHTL Elements , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[17]  O. Fordham,et al.  A W-Band 4-Bit Phase Shifter in Multilayer Scalable Array Systems , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[18]  Wei-Tsung Li,et al.  60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation , 2013, IEEE Transactions on Microwave Theory and Techniques.

[19]  Gabriel M. Rebeiz,et al.  A 4-Bit Passive Phase Shifter for Automotive Radar Applications in 0.13 μm CMOS , 2009, 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium.

[20]  O. Ambacher,et al.  A subharmonic chipset for gigabit communication around 240 GHz , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[21]  C.-Y. Hsu,et al.  A 60-GHz Millimeter-wave CMOS Marchand Balun , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[22]  Sanggeun Jeon,et al.  300 GHz InP HBT amplifier with 10 mW output power , 2014 .

[23]  Patrick Reynaert,et al.  A 0.54 THz Signal Generator in 40 nm Bulk CMOS With 22 GHz Tuning Range and Integrated Planar Antenna , 2014, IEEE Journal of Solid-State Circuits.

[24]  Richard Lai,et al.  A 50 mW 220 GHz power amplifier module , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[25]  Toshihiro Shimura,et al.  A 76–81 GHz active phase shifter for phased array automotive radar in 65nm CMOS , 2013, 2013 European Microwave Integrated Circuit Conference.

[26]  Frank Ellinger,et al.  220–250-GHz Phased-Array Circuits in 0.13-$\mu{\hbox {m}}$ SiGe BiCMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[27]  I. Sarkas,et al.  Second generation transceivers for d-band radar and data communication applications , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[28]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[29]  Gabriel M. Rebeiz,et al.  A 90–100-GHz 4 $\times$ 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities , 2013, IEEE Transactions on Microwave Theory and Techniques.

[30]  Gabriel M. Rebeiz,et al.  A 90–100 Ghz 4×4 sige BiCMOS polarimetric transmit-receive phased array with simultaneous receive-beams capabilities , 2013, 2013 IEEE International Symposium on Phased Array Systems and Technology.