Order and chaos

We review integrable and chaotic systems and the transition from Order to Chaos. We give the various types of orbits in Stiickel potentials of 2 and 3 degrees of freedom. Then we discuss integrable systems in general. In particular we consider Li ouville systems and the Painleve test of integrability. Formal integrals (like the “third” integral) are an important tool in galactic dynamics. We discuss their construction, and the limits of their applicability by means of Nehoroshev's theory. Then we enumerate the various routes to chaos in dissipative and conservative systems. The creation of large degree of chaos follows the destruction of the last KAM (Kolmogorov, Arnold, Moser) torus and the formation of cantori. We discuss -the structure of the chaotic regions, that are filled with the asymptotic curves of the unstable periodic orbits. In systems of 3 degrees of freedom we have 3 main new phenomena: Complex instability, Collisions of bifurcations, and Arnold diffusion. Finally we discuss applications of the theory of fractals on the forms of the orbits.

[1]  J. Henrard,et al.  A semi-numerical perturbation method for separable hamiltonian systems , 1990 .

[2]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[3]  Antonio Giorgilli,et al.  A computer program for integrals of motion , 1984 .

[4]  D. Lynden-Bell Stellar Dynamics: Exact Solution of the Self-Gravitation Equation , 1961 .

[5]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[6]  Bifurcations in systems of three degrees of freedom , 1986 .

[7]  M. Hénon,et al.  Integrals of the Toda lattice , 1974 .

[8]  T. Statler,et al.  Self-Consistent Models of Perfect Triaxial Galaxies , 1986 .

[9]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[10]  H. Yoshida Non-integrability of the truncated Toda lattice Hamiltonian at any order , 1988 .

[11]  F. Vivaldi,et al.  Integrable Hamiltonian Systems and the Painleve Property , 1982 .

[12]  Alfred Ramani,et al.  The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .

[13]  P. Magnenat,et al.  Simple three-dimensional periodic orbits in a galactic-type potential , 1985 .

[14]  A. Eddington The Dynamics of a Stellar System. Third Paper: Oblate and other Distributions , 1915 .

[15]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[16]  G. Contopoulos,et al.  A rotating Staeckel potential , 1992 .

[17]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[18]  J. Henrard,et al.  Secular resonances in the asteroid belt: Theoretical perturbation approach and the problem of their location , 1991 .

[19]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[20]  T. Zeeuw Elliptical galaxies with separable potentials , 1985 .

[21]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[22]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[23]  Dumas,et al.  Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. , 1993, Physical review letters.

[24]  G. Contopoulos Periodic orbits and chaos around two black holes , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  G. Benettin,et al.  Universal properties in conservative dynamical systems , 1980 .

[26]  S. Rice,et al.  Scattering from a classically chaotic repellor , 1989 .

[27]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[28]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[29]  Li,et al.  Fractal dimension of cantori. , 1986, Physical review letters.

[30]  W. Reinhardt,et al.  Approximate constants of motion for classically chaotic vibrational dynamics: Vague tori, semiclassical quantization, and classical intramolecular energy flow , 1982 .

[31]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[32]  J. Moser,et al.  New aspects in the theory of stability of Hamiltonian systems , 1958 .

[33]  C. Hunter Integrable Galactic Models a , 1988 .

[34]  Peter Grassberger,et al.  On the fractal dimension of the Henon attractor , 1983 .

[35]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[36]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[37]  Antonio Giorgilli,et al.  An efficient procedure to compute fractal dimensions by box counting , 1986 .

[38]  Edmund Taylor Whittaker,et al.  A treatise on the analytical dynamics of particles and rigid bodies , 1927 .

[39]  The generation of spiral characteristics , 1990 .

[40]  Luigi Chierchia,et al.  Construction of analytic KAM surfaces and effective stability bounds , 1988 .

[41]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[42]  A. Morbidelli On the successive elimination of perturbation harmonics , 1993 .

[43]  A. Giorgilli,et al.  Bifurcations and complex instability in a 4-dimensional symplectic mapping , 1988 .

[44]  Jarmo Hietarinta,et al.  Direct methods for the search of the second invariant , 1987 .

[45]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[46]  B. Chirikov,et al.  Patterns in chaos , 1991 .

[47]  M. Rosenbluth,et al.  Destruction of magnetic surfaces by magnetic field irregularities , 1966, Hamiltonian Dynamical Systems.

[48]  S. Shenker,et al.  Critical behavior of a KAM surface: I. Empirical results , 1982 .

[49]  G. Contopoulos Resonance Cases and Small Divisors in a Third Integral of Motion. I , 1963 .

[50]  P. O. Vandervoort Isolating integrals of the motion for stellar orbits in a rotating galactic bar , 1979 .

[51]  D. Lynden-Bell,et al.  Best approximate quadratic integrals in stellar dynamics , 1985 .

[52]  G. Contopoulos The Particle Resonance in Spiral Galaxies. Nonlinear Effects , 1973 .

[53]  P. O. Vandervoort On Schwarzschild's method for the construction of model galaxies , 1984 .

[54]  Grebogi,et al.  Fractal boundaries for exit in Hamiltonian dynamics. , 1988, Physical review. A, General physics.

[55]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[56]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[57]  D. Lynden-Bell Stellar Dynamics: Potentials with Isolating Integrals , 1962 .

[58]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[59]  George Contopoulos,et al.  On the existence of a third integral of motion , 1963 .

[60]  G. Contopoulos Resonance Effects in Spiral Galaxies , 1970 .

[61]  A. Giorgilli,et al.  Quantitative perturbation theory by successive elimination of harmonics , 1993 .

[62]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[63]  T. Zeeuw Integrable Models for Galaxies a , 1988 .