Higher order generalized Euler characteristics and generating series
暂无分享,去创建一个
[1] S. Gusein-Zade,et al. On the power structure over the Grothendieck ring of varieties and its applications , 2006, math/0605467.
[2] T. Fernex,et al. Stringy Chern classes of singular varieties , 2004, math/0407314.
[3] S. Gusein-Zade,et al. Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points , 2004, math/0407204.
[4] S. Gusein-Zade,et al. A power structure over the Grothendieck ring of varieties , 2004 .
[5] Hirotaka Tamanoi. Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory , 2001, math/0103177.
[6] Weiqiang Wang,et al. Orbifold Hodge numbers of the wreath product orbifolds , 2000, math/0005124.
[7] Jason E. Fulman,et al. Orbifold Euler characteristics and the number of commutingm-tuples in the symmetric groups , 1998 .
[8] V. Batyrev,et al. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , 1994, alg-geom/9410001.
[9] E. Zaslow. Topological orbifold models and quantum cohomology rings , 1992, hep-th/9211119.
[10] F. Hirzebruch,et al. On the Euler number of an orbifold , 1990 .
[11] M. Atiyah,et al. On equivariant Euler characteristics , 1989 .
[12] E. Witten,et al. Strings on orbifolds , 1985 .
[13] T. Kawasaki. The signature theorem for V-manifolds , 1978 .
[14] I. G. MacDonald. The Poincare Polynomial of a Symmetric Product , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.