Higher order generalized Euler characteristics and generating series

[1]  S. Gusein-Zade,et al.  On the power structure over the Grothendieck ring of varieties and its applications , 2006, math/0605467.

[2]  T. Fernex,et al.  Stringy Chern classes of singular varieties , 2004, math/0407314.

[3]  S. Gusein-Zade,et al.  Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points , 2004, math/0407204.

[4]  S. Gusein-Zade,et al.  A power structure over the Grothendieck ring of varieties , 2004 .

[5]  Hirotaka Tamanoi Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory , 2001, math/0103177.

[6]  Weiqiang Wang,et al.  Orbifold Hodge numbers of the wreath product orbifolds , 2000, math/0005124.

[7]  Jason E. Fulman,et al.  Orbifold Euler characteristics and the number of commutingm-tuples in the symmetric groups , 1998 .

[8]  V. Batyrev,et al.  Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , 1994, alg-geom/9410001.

[9]  E. Zaslow Topological orbifold models and quantum cohomology rings , 1992, hep-th/9211119.

[10]  F. Hirzebruch,et al.  On the Euler number of an orbifold , 1990 .

[11]  M. Atiyah,et al.  On equivariant Euler characteristics , 1989 .

[12]  E. Witten,et al.  Strings on orbifolds , 1985 .

[13]  T. Kawasaki The signature theorem for V-manifolds , 1978 .

[14]  I. G. MacDonald The Poincare Polynomial of a Symmetric Product , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.