Variational Inference for Diffusion Processes

Diffusion processes are a family of continuous-time continuous-state stochastic processes that are in general only partially observed. The joint estimation of the forcing parameters and the system noise (volatility) in these dynamical systems is a crucial, but non-trivial task, especially when the system is nonlinear and multi-modal. We propose a variational treatment of diffusion processes, which allows us to compute type II maximum likelihood estimates of the parameters by simple gradient techniques and which is computationally less demanding than most MCMC approaches. We also show how a cheap estimate of the posterior over the parameters can be constructed based on the variational free energy.

[1]  G. Eyink,et al.  Accelerated Monte Carlo for Optimal Estimation of Time Series , 2005 .

[2]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  G. Roberts,et al.  Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[7]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[8]  S. Sarkka,et al.  Application of Girsanov Theorem to Particle Filtering of Discretely Observed Continuous - Time Non-Linear Systems , 2007, 0705.1598.

[9]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[13]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  David Barber,et al.  Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems , 2006, J. Mach. Learn. Res..

[16]  Dan Cornford,et al.  Gaussian Process Approximations of Stochastic Differential Equations , 2007, Gaussian Processes in Practice.

[17]  A. Stuart,et al.  Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .

[18]  G. Eyink,et al.  A mean field approximation in data assimilation for nonlinear dynamics , 2004 .

[19]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[20]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[21]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[22]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[23]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .