Zentrum für Informationsdienste und Hochleistungsrechnen ( ZIH ) A primal-dual Jacobi – Davidson-like method for nonlinear eigenvalue problems
暂无分享,去创建一个
[1] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[2] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[3] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[4] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[5] L. B. Rall,et al. The solution of characteristic value-vector problems by Newton's method , 1968 .
[6] M. Hochstenbach,et al. Two-sided and alternating Jacobi-Davidson , 2001 .
[7] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[8] Peter Lancaster,et al. On the numerical solution of nonlinear eigenvalue problems , 1995, Computing.
[9] Heinrich Voß,et al. Numerical methods for sparse nonlinear eigenvalue problems , 2004 .
[10] Alastair Spence,et al. Photonic band structure calculations using nonlinear eigenvalue techniques , 2005 .
[11] V. Mehrmann,et al. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .
[12] H. Schwetlick,et al. A generalized Rayleigh quotient iteration for computing simple eigenvalues of nonnormal matrices , 2000 .
[13] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[14] Eugene L. Allgower,et al. A General View of Minimally Extended Systems for Simple Bifurcation Points , 1997 .
[15] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..