Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

[1]  J. Chakravartty,et al.  Disappearance and reappearance of serrated plastic flow under cyclic loading: A study of dislocation substructures , 2014 .

[2]  J. Chakravartty,et al.  Low cycle fatigue behavior of Zircaloy-2 at room temperature , 2013 .

[3]  Xiao Lin,et al.  Low cycle fatigue properties and microscopic deformation structure of Zircaloy-4 in recrystallized and stress-relieved conditions , 1999 .

[4]  A. Armas,et al.  Effect of strain rate on the cyclic hardening of Zircaloy-4 in the dynamic strain aging temperature range , 1997 .

[5]  H. Gu,et al.  Dislocation structures in zirconium and zircaloy-4 fatigued at different temperatures , 1997 .

[6]  G. Moscato,et al.  Dynamic strain aging influence on the cyclic behavior of zircaloy-4 , 1996 .

[7]  K. B. S. Rao,et al.  Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonic PE-16 superalloy , 1994 .

[8]  Yi Jae-Kyung,et al.  Yielding and dynamic strain aging behavior of Zircaloy-4 tube , 1992 .

[9]  S. Nam,et al.  The effect of dynamic strain ageing on the anomalous strain-rate-dependent tensile strain of Zircaloy-4 , 1990 .

[10]  I. Alvarez-Armas,et al.  Development of substructure in Zircaloy-4 during LCF at 873 K , 1990 .

[11]  P. Vasudevan,et al.  Low-cycle fatigue studies on nuclear reactor Zircaloy-2 fuel tubes at room temperature, 300 and 350°C☆ , 1980 .

[12]  K. U. Snowden,et al.  The fatigue behaviour of α-zirconium and Zircaloy-2 in the temperature range 20 to 700° C , 1977 .

[13]  K. Pettersson Low-cycle fatigue properties of Zircaloy-2 cladding , 1975 .