The reaction of benzene with a ground state carbon atom, C(3Pj)

The reaction between benzene and a single ground state carbon atom, C(3Pj), which yields a C7H5 radical without a barrier in the exit channel, has been studied using density functional theory (B3LYP), Moller–Plesset perturbation theory, and the G2(B3LYP/MP2) and complete basis set (CBS) model chemistries. Comparing the computed reaction energies for the formation of various C7H5 radicals with experimental data suggests that the 1,2-didehydrocycloheptatrienyl radical (15) is observed in crossed-beams experiments at collision energies between 2 and 12 kcal mol−1. The carbon atom attacks the π-electron density of benzene and forms without entrance barrier a Cs symmetric complex (17T) in which the carbon atom is bound to the edge of benzene. From 17T, the insertion of the C atom into a benzene CC bond to yield triplet cycloheptatrienylidene (9T) is associated with a much lower barrier than the insertion into a CH bond to give triplet phenylcarbene (7T). As both steps are strongly exothermic, high energy vinyl...

[1]  M. McGlinchey,et al.  Chemistry and the carbon arc , 1973 .

[2]  P. Shevlin,et al.  Mechanism of the Reaction of Atomic Carbon with Pyrrole. Evidence for the Intermediacy of a Novel Dehydropyridinium Ylide , 1994 .

[3]  T. Millar,et al.  THE EFFECT OF RAPID NEUTRAL-NEUTRAL REACTIONS ON CHEMICAL-MODELS OF DENSE INTERSTELLAR CLOUDS , 1994 .

[4]  M. Nimlos,et al.  A mndo study of 3-, 5-, 7- and 9-membered carbocyclic, completely conjugated, planar carbenes and their nonplanar isomers , 1985 .

[5]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[6]  Julio C. Facelli,et al.  13C DIPOLAR NMR SPECTRUM OF MATRIX-ISOLATED O-BENZYNE-1,2-13C2 , 1996 .

[7]  Nadia Balucani,et al.  Crossed beam reaction of cyano radicals with hydrocarbon molecules. I. Chemical dynamics of cyanobenzene (C6H5CN; X 1A1) and perdeutero cyanobenzene (C6D5CN; X 1A1) formation from reaction of CN(X 2Σ+) with benzene C6H6(X 1A1g), and d6-benzene C6D6(X 1A1g) , 1999 .

[8]  C. W. Bauschlicher,et al.  A modification of the Gaussian‐2 approach using density functional theory , 1995 .

[9]  R. Curl,et al.  Infrared Kinetic Spectroscopy Applied to Radical Reaction Yields: Propargyl from the Reaction of Singlet Methylene with Acetylene , 1996, Modern Spectroscopy of Solids, Liquids, and Gases.

[10]  Kristine Pierloot,et al.  THEORETICAL STUDY OF THE CHEMICAL BONDING IN NI(C2H4) AND FERROCENE , 1995 .

[11]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[12]  Ernest R Davidson Modern Electronic Structure Theory And Applications In Organic Chemistry , 1997 .

[13]  E. Herbst,et al.  THE INTERSTELLAR GAS PHASE PRODUCTION OF HIGHLY COMPLEX HYDROCARBONS : CONSTRUCTION OF A MODEL , 1995 .

[14]  Richard D. Smith Formation of radicals and complex organic compounds by high-temperature pyrolysis: The pyrolysis of toluene , 1979 .

[15]  Molecular mechanics and ab initio calculations on cyclopentadienyl cations , 1998 .

[16]  P. Schleyer,et al.  Application of the orbital deletion procedure (ODP) to planar carbocations , 1998 .

[17]  C. Wentrup,et al.  ESR Observation of Thermally Produced Triplet Nitrenes and Photochemically Produced Triplet Cycloheptatrienylidenes , 1986 .

[18]  E. Herbst,et al.  The importance of classes of neutral-neutral reactions in the production of complex interstellar molecules , 1995 .

[19]  K. Rossler,et al.  Hot atoms in cosmic chemistry. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[20]  C. Wentrup,et al.  Thermal Interconversion of Phenylcarbene and Tropylidene. Preliminary communication , 1970 .

[21]  D. Clary,et al.  INTERSTELLAR CARBON CHEMISTRY : REACTION RATES OF NEUTRAL ATOMIC CARBON WITH ORGANIC MOLECULES , 1994 .

[22]  R. McMahon,et al.  The C7H6 Potential Energy Surface Revisited: Relative Energies and IR Assignment , 1996 .

[23]  Anders Bernhardsson,et al.  An Extended Ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet Ortho-, Meta-, and Para-Benzynes , 1995 .

[24]  M. Márquez,et al.  Ab Initio Study of the Solvent Effects on the Singlet−Triplet Gap of Nitrenium Ions and Carbenes , 1998 .

[25]  C. Cramer,et al.  AB INITIO CHARACTERIZATION OF PHENYLNITRENIUM AND PHENYLCARBENE : REMARKABLY DIFFERENT PROPERTIES FOR ISOELECTRONIC SPECIES , 1994 .

[26]  R. Lemmon,et al.  REACTIONS OF ACCELERATED CARBON IONS AND ATOMS WITH BENZENE. PRODUCT DISTRIBUTION AS A FUNCTION OF CHARGE AND KINETIC ENERGY. , 1969 .

[27]  Kaori Fukuzawa,et al.  Molecular Orbital Study of Neutral-Neutral Reactions concerning HC3N Formation in Interstellar Space , 1997 .

[28]  R. Woodworth,et al.  STRUCTURE OF CARBENE, CH2 , 1956 .

[29]  K. Houk,et al.  Theoretical Studies of the Structure, Aromaticity, and Magnetic Properties of o‐Benzyne , 1997 .

[30]  P. West,et al.  1,2,4,6-Cycloheptatetraene , 1982 .

[31]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[32]  M. Dewar,et al.  Ground states of molecules. 43. A MINDO/3 study of the rearrangement of phenylcarbene to cycloheptatrienacarbene , 1977 .

[33]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[34]  P. Gaspar,et al.  The phenylcarbene rearrangement revisited , 1985 .

[35]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[36]  R. Woodworth,et al.  Methylene, CH2. Stereospecific Reaction with cis- and trans-2-Butene , 1959 .

[37]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[38]  M. W. Wong,et al.  Interconversions of Phenylcarbene, Cycloheptatetraene, Fulvenallene, and Benzocyclopropene. A Theoretical Study of the C(7)H(6) Energy Surface. , 1996, The Journal of organic chemistry.

[39]  R. McMahon,et al.  Rearrangements of C(7)H(6) Isomers: Computational Studies of the Interconversions of Bicyclo[3.2.0]hepta-1,3,6-triene, Bicyclo[3.2.0]hepta-3,6-diene-2-ylidene, Bicyclo[3.2.0]hepta-2,3,6-triene, and Cyclohepta-1,2,4,6-tetraene. , 1997, The Journal of organic chemistry.

[40]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[41]  R. Meyer,et al.  Ab initio ci potential surface and vibronic states of the C5H5 radical , 1980 .

[42]  Elfi Kraka,et al.  CCSD(T) Investigation of the Bergman Cyclization of Enediyne. Relative Stability of o-, m-, and p-Didehydrobenzene , 1994 .

[43]  R. McMahon,et al.  Triplet ground-state cycloheptatrienylidene , 1986 .

[44]  E. E. Waali The cycloheptatrienylidene-cycloheptatetraene problem. A MNDO investigation , 1981 .

[45]  R. Engel,et al.  Reactions of carbon vapor. IV. Reactions of metastable carbon atoms (1S) with olefins , 1967 .

[46]  H. Reisenauer,et al.  Reaction of Silicon Atoms with Acetylene and Ethylene: Generation and Matrix‐Spectroscopic Identification of C2H2Si and C2H4Si Isomers , 1998 .

[47]  Carina Horn,et al.  1,3,5-Cyclohexatrien-1,4-diyl und 2,4-Cyclohexadien-1,4-diyl , 1994 .

[48]  G. B. Ellison,et al.  The C-H Bond Energy of Benzene , 1995 .

[49]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[50]  R. Meyer,et al.  Jahn-teller effect in cyclopentadienyl radical: delocalized vibronic valence isomerisation , 1979 .

[51]  J. R. Sabin,et al.  Semiempirical calculations on phenylcarbene, cycloheptatrienylidene, and cycloheptatetraene and their benzo-annelated derivatives , 1974 .

[52]  R. Kaiser,et al.  Crossed‐beam reaction of C(3Pj) with C2H2(1∑+g): Observation of tricarbon‐hydride C3H , 1995 .

[53]  M. Jacox,et al.  The Infrared and Near-Infrared Spectra of HCC and DCC Trapped in Solid Neon , 1995 .

[54]  C. Ennis,et al.  Formation of spirononatriene and heptafulvalene from an attempt to generate cycloptatrienylidene , 1967 .

[55]  Krishnan Raghavachari,et al.  Gaussian-2 theory using reduced Moller--Plesset orders , 1993 .

[56]  M. Platz Comparison of Phenylcarbene and Phenylnitrene , 1995 .

[57]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[58]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[59]  R. Kaiser,et al.  Crossed‐beam reaction of carbon atoms with hydrocarbon molecules. I. Chemical dynamics of the propargyl radical formation, C3H3 (X2B2), from reaction of C(3Pj) with ethylene, C2H4(X1Ag) , 1996 .

[60]  T. Nakajima,et al.  Potential energy profiles along the doubly degenerate vibrational modes in conjugated molecules , 1984 .

[61]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[62]  R. Squires,et al.  THE PHENYLCARBYNE ANION , 1999 .

[63]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[64]  C. Wentrup,et al.  Synergic nucleophilic and electrophilic properties of carbenes. Synthesis of carbazoles, azafluorenes, .delta.-carbolines, and pyrido- and pyrimido[2,1-a]isoindoles by carbene rearrangement. Tracer studies of the mechanisms and an analysis of the carbon-13 NMR spectra of azafluorenes , 1975 .

[65]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[66]  G. Rotzoll Molecular beam sampling mass-spectrometric study of high-temperature benzene oxidation , 1985 .

[67]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[68]  H. Chen,et al.  A Shock Tube Study of Chlorobenzene Pyrolysis , 1992 .

[69]  K. Houk,et al.  Theoretical studies of the rotational barriers of benzyl cation, radical, and anion and of singlet and triplet phenylcarbene , 1989 .

[70]  Hai Wang,et al.  Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition , 1998 .

[71]  E. Feigelson,et al.  Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes , 1989 .

[72]  P. Shevlin,et al.  MODE OF ATTACK OF ATOMIC CARBON ON BENZENE RINGS , 1998 .

[73]  E. Herbst,et al.  Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds , 1986 .

[74]  Jeffery W. Johnson,et al.  Rearrangements of the isomeric tolylmethylenes , 1988 .

[75]  R. Lindh,et al.  Singlet benzyne thermochemistry: a CASPT2 study of the enthalpies of formation , 1996 .

[76]  Christopher J. Cramer,et al.  BERGMAN, AZA-BERGMAN, AND PROTONATED AZA-BERGMAN CYCLIZATIONS AND INTERMEDIATE 2,5-ARYNES : CHEMISTRY AND CHALLENGES TO COMPUTATION , 1998 .

[77]  D. Clary,et al.  Rate constants for chemical reactions of radicals at low temperatures , 1993 .

[78]  K. Ruedenberg,et al.  The ring opening of cyclopropylidene to allene: key features of the accurate reaction surface , 1991 .

[79]  K. Rössler Chemical modification of insulators by ion implantation, fundamental mechanisms and astrophysical implications , 1986 .

[80]  E. Wasserman,et al.  The Electron Paramagnetic Resonance of Phenylmethylene and Biphenylenemethylene; A Luminescent Reaction Associated With a Ground State Triplet Molecule , 1962 .

[81]  P. Skell,et al.  Reactions of Bivalent Carbon Compounds. Reactivities in Olefin-Dibromocarbene Reactions , 1956 .

[82]  Paul von Ragué Schleyer,et al.  Consequences of Triplet Aromaticity in 4nπ‐Electron Annulenes: Calculation of Magnetic Shieldings for Open‐Shell Species , 1998 .

[83]  Jeffery W. Johnson,et al.  1,2,4,6-Cycloheptatetraene: the key intermediate in arylcarbene interconversions and related C7H6 rearrangements , 1987 .

[84]  H. Schaefer,et al.  The Naphthylcarbene Potential Energy Hypersurface , 1997 .

[85]  P. Wenthold,et al.  Regioselective synthesis of biradical negative ions in the gas phase. Generation of trimethylenemethane, m-benzyne, and p-benzyne anions , 1994 .

[86]  C. Wentrup,et al.  Force field-SCF calculations on cyclopropene intermediates in carbene rearrangements. Comparison with experiment , 1985 .

[87]  A. Schaefer,et al.  TETRA-TERT-BUTYLETHYLENE : AN ELUSIVE MOLECULE WITH A HIGHLY TWISTED DOUBLE BOND. CAN IT BE MADE BY CARBENE DIMERIZATION ? , 1996 .

[88]  R. Lemmon Reactions of accelerated carbon ions and atoms. , 1973 .

[89]  H. Schaefer,et al.  Crossed beams reaction of atomic carbon, C(3Pj), with d6-benzene, C6D6(X 1A1g): Observation of the per-deutero-1,2-didehydro- cycloheptatrienyl radical, C7D5(X 2B2) , 1999 .

[90]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[91]  Reaction of Carbon Atoms with Benzene , 1967 .

[92]  Paul von Ragué Schleyer,et al.  Tetradehydrobenzenes: Singlet−Triplet Energy Separations and Vibrational Frequencies , 1999 .

[93]  P. R. Westmoreland,et al.  Forming benzene in flames by chemically activated isomerization , 1989 .

[94]  M. Head‐Gordon,et al.  A Combined Experimental and Theoretical Study on the Formation of Interstellar C3H Isomers , 1996, Science.

[95]  R. Lemmon,et al.  Hot-atom chemistry of 14C+ in benzene. Partial degradations and suggested mechanisms , 1969 .

[96]  P. Gaspar,et al.  Interconversion of o-, m- and p-Tolylcarbenes , 1970 .

[97]  K. Houk,et al.  Dramatic differences in intramolecular reactivities of singlet arylcarbenes and benzyl cations. , 1986, Journal of the American Chemical Society.

[98]  R. Engel,et al.  Reactions of Carbon Vapor. II. Reactions of Ground-State (3P) Atomic Carbon with Olefins1,2 , 1966 .

[99]  M. M. Graff Fast neutral reactions in cold interstellar clouds , 1989 .

[100]  P. Schreiner,et al.  Carbene Rearrangements Unsurpassed: Details of the C(7)H(6) Potential Energy Surface Revealed. , 1996, The Journal of organic chemistry.

[101]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[102]  H. Schaefer,et al.  RING OPENING OF SUBSTITUTED CYCLOPROPYLIDENES TO CYCLIC ALLENES , 1997 .

[103]  W. D. Allen,et al.  Hartree-Fock orbital instability envelopes in highly correlated single-reference wave functions , 1997 .

[104]  R. Kaiser,et al.  Crossed‐beam reaction of carbon atoms with hydrocarbon molecules. II. Chemical dynamics of n‐C4H3 formation from reaction of C(3Pj) with methylacetylene, CH3CCH (X1A1) , 1996 .

[105]  H. Schaefer,et al.  RING OPENING OF CYCLOPROPYLIDENE AND INTERNAL ROTATION OF ALLENE , 1996 .

[106]  P. Schleyer Encyclopedia of computational chemistry , 1998 .