Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.

Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.

[1]  Karl-Heinz Altmann,et al.  Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. , 2014, Nature chemical biology.

[2]  A. Lalvani,et al.  Interferon-gamma release assays for tuberculosis: current and future applications , 2014, Expert review of respiratory medicine.

[3]  S. Cole,et al.  Tuberculosis drug discovery in the post-post-genomic era , 2014, EMBO molecular medicine.

[4]  Riccardo Manganelli,et al.  Targeting type VII/ESX secretion systems for development of novel antimycobacterial drugs. , 2013, Current pharmaceutical design.

[5]  J. Badiola,et al.  ESX‐1‐induced apoptosis is involved in cell‐to‐cell spread of Mycobacterium tuberculosis , 2013, Cellular microbiology.

[6]  Julian Parkhill,et al.  Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study , 2013, The Lancet. Respiratory medicine.

[7]  V. Mizrahi,et al.  Vitamin B(12) metabolism in Mycobacterium tuberculosis. , 2013, Future microbiology.

[8]  J. Coppee,et al.  Identification and characterization of the genetic changes responsible for the characteristic smooth‐to‐rough morphotype alterations of clinically persistent Mycobacterium abscessus , 2013, Molecular microbiology.

[9]  D. Sherman,et al.  Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis , 2013, PloS one.

[10]  Se Yeon Kim,et al.  Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis , 2013, Nature Medicine.

[11]  K. Holt,et al.  Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans , 2013, Nature Genetics.

[12]  P. Brennan,et al.  Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. , 2013, Future microbiology.

[13]  Joel S. Freundlich,et al.  Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis , 2013, Nature chemical biology.

[14]  J. Parkhill,et al.  Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study , 2013, The Lancet.

[15]  Alimuddin Zumla,et al.  Advances in the development of new tuberculosis drugs and treatment regimens , 2013, Nature Reviews Drug Discovery.

[16]  S. Mostowy,et al.  Faculty Opinions recommendation of Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. , 2013 .

[17]  Marisa Klopper,et al.  Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa , 2013, Emerging infectious diseases.

[18]  Stefan Niemann,et al.  Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study , 2013, PLoS medicine.

[19]  E. Willery,et al.  Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis , 2013, Nature Genetics.

[20]  S. Chakraborty,et al.  Para-Aminosalicylic Acid Acts as an Alternative Substrate of Folate Metabolism in Mycobacterium tuberculosis , 2013, Science.

[21]  M. Braunstein,et al.  Protein Export by the Mycobacterial SecA2 System Is Determined by the Preprotein Mature Domain , 2012, Journal of bacteriology.

[22]  B. Samten,et al.  MprAB Regulates the espA Operon in Mycobacterium tuberculosis and Modulates ESX-1 Function and Host Cytokine Response , 2012, Journal of bacteriology.

[23]  S. Mwaigwisya,et al.  Whole-genome sequencing to establish relapse or reinfection with Mycobacterium tuberculosis : a retrospective observational study , 2013 .

[24]  W. Bitter,et al.  Getting across the Cell Envelope: Mycobacterial Protein Secretion Getting across the Cell Envelope: Mycobacterial Protein Secretion , 2022 .

[25]  R. Brosch,et al.  The ESX-5 Associated eccB5-eccC5 Locus Is Essential for Mycobacterium tuberculosis Viability , 2012, PloS one.

[26]  C. Goss,et al.  Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. , 2012, American journal of respiratory and critical care medicine.

[27]  S. Fortune,et al.  Mycobacterium tuberculosis ESAT-6 Exhibits a Unique Membrane-interacting Activity That Is Not Found in Its Ortholog from Non-pathogenic Mycobacterium smegmatis* , 2012, The Journal of Biological Chemistry.

[28]  G. Bloemberg,et al.  Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). , 2012, The Journal of antimicrobial chemotherapy.

[29]  D. Follmann,et al.  Linezolid for treatment of chronic extensively drug-resistant tuberculosis. , 2012, The New England journal of medicine.

[30]  T. Ottenhoff,et al.  Composition of the type VII secretion system membrane complex , 2012, Molecular microbiology.

[31]  S. Cole,et al.  Towards a new tuberculosis drug: pyridomycin – nature's isoniazid , 2012, EMBO molecular medicine.

[32]  J. Gaillard,et al.  Inhaled therapies, azithromycin and Mycobacterium abscessus in cystic fibrosis patients , 2012, European Respiratory Journal.

[33]  J. Cox,et al.  Extracellular M. tuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway , 2012, Cell.

[34]  E. Coccia,et al.  ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells , 2012, Autophagy.

[35]  P. Peters,et al.  ESX‐1‐mediated translocation to the cytosol controls virulence of mycobacteria , 2012, Cellular microbiology.

[36]  W. Bishai,et al.  New drugs for the treatment of tuberculosis: hope and reality [State of the Art Series. New tools. Number 2 in the series]. , 2012, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[37]  S. Smerdon,et al.  Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis , 2012, Bioorganic & medicinal chemistry letters.

[38]  R. Brosch,et al.  Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. , 2012, Cell host & microbe.

[39]  K. Andries,et al.  Sterilizing Activities of Novel Combinations Lacking First- and Second-Line Drugs in a Murine Model of Tuberculosis , 2012, Antimicrobial Agents and Chemotherapy.

[40]  B. Gicquel,et al.  Mycobacterium abscessus: a new antibiotic nightmare. , 2012, The Journal of antimicrobial chemotherapy.

[41]  I. Comas,et al.  Long-Range Transcriptional Control of an Operon Necessary for Virulence-Critical ESX-1 Secretion in Mycobacterium tuberculosis , 2012, Journal of bacteriology.

[42]  R. Brosch,et al.  Disruption of the ESX‐5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation , 2012, Molecular microbiology.

[43]  J. Rougemont,et al.  Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein , 2012, PLoS pathogens.

[44]  J. Tschopp,et al.  Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis , 2012, European journal of immunology.

[45]  R. Brosch,et al.  Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death , 2012, PLoS pathogens.

[46]  Vinod Nair,et al.  SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis , 2012, Antimicrobial Agents and Chemotherapy.

[47]  Michael S. Scherman,et al.  INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE , 2011, Nature chemical biology.

[48]  Ying Zhang,et al.  Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis , 2011, Science.

[49]  M. Jackson,et al.  Increased Virulence of an Epidemic Strain of Mycobacterium massiliense in Mice , 2011, PloS one.

[50]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[51]  S. Smerdon,et al.  Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents , 2011, Tuberculosis.

[52]  M. Behr,et al.  The rise and fall of the Mycobacterium tuberculosis genome. , 2011, Trends in microbiology.

[53]  W. Jacobs Jr,et al.  Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis , 2011, Cellular microbiology.

[54]  David J F du Plessis,et al.  The Sec translocase. , 2011, Biochimica et biophysica acta.

[55]  M. Braunstein,et al.  Protein export systems of Mycobacterium tuberculosis: novel targets for drug development? , 2010, Future microbiology.

[56]  B. Berks,et al.  The Tat Protein Export Pathway , 2010, EcoSal Plus.

[57]  A. Genovesio,et al.  High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling , 2010, PLoS pathogens.

[58]  N. Hacohen,et al.  Mycobacterium tuberculosis protein ESAT‐6 is a potent activator of the NLRP3/ASC inflammasome , 2010, Cellular microbiology.

[59]  C. Dye,et al.  The Population Dynamics and Control of Tuberculosis , 2010, Science.

[60]  H. Schweizer,et al.  Immunotherapy Markedly Increases the Effectiveness of Antimicrobial Therapy for Treatment of Burkholderia pseudomallei Infection , 2010, Antimicrobial Agents and Chemotherapy.

[61]  Stewart T. Cole,et al.  Towards anti-virulence drugs targeting ESX-1 mediated pathogenesis of Mycobacterium tuberculosis , 2010 .

[62]  P. Peters,et al.  Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins , 2010, PLoS pathogens.

[63]  N. Khardori Antigen Load Governs the Differential Priming of CD8 T Cells in Response to the Bacille Calmette Guérin Vaccine or Mycobacterium tuberculosis Infection , 2010 .

[64]  Gavin Churchyard,et al.  The diarylquinoline TMC207 for multidrug-resistant tuberculosis. , 2009, The New England journal of medicine.

[65]  S. Fortune,et al.  Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition , 2009, Proceedings of the National Academy of Sciences.

[66]  Stewart T. Cole,et al.  High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors , 2009, PLoS pathogens.

[67]  Jun Liu,et al.  Systematic Genetic Nomenclature for Type VII Secretion Systems , 2009, PLoS pathogens.

[68]  G. Palù,et al.  Characterization of a Mycobacterium tuberculosis ESX-3 Conditional Mutant: Essentiality and Rescue by Iron and Zinc , 2009, Journal of bacteriology.

[69]  R. Brosch,et al.  Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families , 2009, Molecular microbiology.

[70]  V. Barbe,et al.  Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus , 2009, PloS one.

[71]  Stewart T. Cole,et al.  Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis , 2009, Science.

[72]  C. Barry,et al.  The mechanism of action of PA-824 , 2009, Communicative & integrative biology.

[73]  Amit Singhal,et al.  Synthetic EthR inhibitors boost antituberculous activity of ethionamide , 2009, Nature Medicine.

[74]  R. Brosch,et al.  Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[75]  F. Forti,et al.  Pristinamycin-inducible gene regulation in mycobacteria. , 2009, Journal of biotechnology.

[76]  R. Brosch,et al.  ESX/type VII secretion systems and their role in host-pathogen interaction. , 2009, Current opinion in microbiology.

[77]  P. Brennan,et al.  Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. , 2009, Advances in applied microbiology.

[78]  F. Levillain,et al.  Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice , 2008, Molecular microbiology.

[79]  S. Raghavan,et al.  Secreted transcription factor controls Mycobacterium tuberculosis virulence , 2008, Nature.

[80]  M. Braunstein,et al.  Identification of Functional Tat Signal Sequences in Mycobacterium tuberculosis Proteins , 2008, Journal of bacteriology.

[81]  Mohamed Chami,et al.  Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State , 2008, Journal of bacteriology.

[82]  Julian Parkhill,et al.  Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. , 2008, Genome research.

[83]  Andrew Leis,et al.  Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure , 2008, Proceedings of the National Academy of Sciences.

[84]  S. Cole,et al.  Control of M. tuberculosis ESAT-6 Secretion and Specific T Cell Recognition by PhoP , 2008, PLoS pathogens.

[85]  Peter J. Peters,et al.  M. tuberculosis and M. leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells , 2007, Cell.

[86]  S. Cole,et al.  ESAT-6 from Mycobacterium tuberculosis Dissociates from Its Putative Chaperone CFP-10 under Acidic Conditions and Exhibits Membrane-Lysing Activity , 2007, Journal of bacteriology.

[87]  J. Johndrow,et al.  The Type I IFN Response to Infection with Mycobacterium tuberculosis Requires ESX-1-Mediated Secretion and Contributes to Pathogenesis1 , 2007, The Journal of Immunology.

[88]  Paul D van Helden,et al.  Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions , 2006, BMC Evolutionary Biology.

[89]  S. Cole,et al.  Inactivation of Rv2525c, a Substrate of the Twin Arginine Translocation (Tat) System of Mycobacterium tuberculosis, Increases β-Lactam Susceptibility and Virulence , 2006, Journal of bacteriology.

[90]  S. Cole,et al.  The Ser/Thr Protein Kinase PknB Is Essential for Sustaining Mycobacterial Growth , 2006, Journal of bacteriology.

[91]  P. Small,et al.  Impact of Bacterial Genetics on the Transmission of Isoniazid-Resistant Mycobacterium tuberculosis , 2006, PLoS pathogens.

[92]  Irina Kolesnikova,et al.  The Mycobacterium tuberculosis PhoPR two‐component system regulates genes essential for virulence and complex lipid biosynthesis , 2006, Molecular microbiology.

[93]  M. Pavelka,et al.  The Twin-Arginine Translocation Pathway of Mycobacterium smegmatis Is Functional and Required for the Export of Mycobacterial β-Lactamases , 2005, Journal of bacteriology.

[94]  S. Raghavan,et al.  A non‐RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis , 2005, Molecular microbiology.

[95]  R. Brosch,et al.  Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis , 2005, PLoS pathogens.

[96]  M. Chase,et al.  Mutually dependent secretion of proteins required for mycobacterial virulence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Hinrich W. H. Göhlmann,et al.  A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis , 2005, Science.

[98]  Cell Envelope Protein PPE68 Contributes to Mycobacterium tuberculosis RD1 Immunogenicity Independently of a 10-Kilodalton Culture Filtrate Protein and ESAT-6 , 2004, Infection and Immunity.

[99]  D. Sherman,et al.  Individual RD1‐region genes are required for export of ESAT‐6/CFP‐10 and for virulence of Mycobacterium tuberculosis , 2004, Molecular microbiology.

[100]  C. Grimaldi,et al.  A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Christopher M. Sassetti,et al.  Genetic requirements for mycobacterial survival during infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[102]  D. Eisenberg,et al.  The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[104]  John Chan,et al.  SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis , 2003, Molecular microbiology.

[105]  S. Cole,et al.  Effect of katG Mutations on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans , 2002, Infection and Immunity.

[106]  I. Smith,et al.  Phospholipases C are involved in the virulence of Mycobacterium tuberculosis , 2002, Molecular microbiology.

[107]  B. Gicquel,et al.  An essential role for phoP in Mycobacterium tuberculosis virulence , 2001, Molecular microbiology.

[108]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[109]  Clifton E. Barry,et al.  A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis , 2000, Nature.

[110]  William R. Jacobs,et al.  Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice , 1999, Nature.

[111]  B. Gicquel,et al.  Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature‐tagged transposon mutagenesis , 1999, Molecular microbiology.

[112]  L. Illis Harrison's Principles of Internal Medicine 14th Edition , 1998, Spinal Cord.

[113]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[114]  W. Jacobs,et al.  Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[115]  W. Jacobs,et al.  Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Böttger,et al.  Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods , 1996, Journal of clinical microbiology.

[117]  T. Stadtman,et al.  Vitamin B12 , 1971, Science.