Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties

Solid freeform fabrication (SFF) technologies have the ability to manufacture functional parts with locally controlled properties, which provides an opportunity for manufacturing a whole new class of products. To a certain extent, fused deposition modeling (FDM) has the potential to fabricate parts with locally controlled properties by changing deposition density and deposition orientation. To fully exploit this potential, this paper reports a study of the materials, the fabrication process, and the mechanical properties of FDM prototypes. Theoretical and experimental analyses of mechanical properties of FDM processes and prototypes were carried out to establish the constitutive models. A set of equations is proposed to determine the elastic constants of FDM prototypes. The models are then evaluated by experiments. An example of FDM prototype with locally controlled properties is provided to demonstrate the ideas.