Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects

Proteochemometric (PCM) modelling is a computational method to model the bioactivity of multiple ligands against multiple related protein targets simultaneously. Hence it has been found to be particularly useful when exploring the selectivity and promiscuity of ligands on different proteins. In this review, we will firstly provide a brief introduction to the main concepts of PCM for readers new to the field. The next part focuses on recent technical advances, including the application of support vector machines (SVMs) using different kernel functions, random forests, Gaussian processes and collaborative filtering. The subsequent section will then describe some novel practical applications of PCM in the medicinal chemistry field, including studies on GPCRs, kinases, viral proteins (e.g. from HIV) and epigenetic targets such as histone deacetylases. Finally, we will conclude by summarizing novel developments in PCM, which we expect to gain further importance in the future. These developments include adding three-dimensional protein target information, application of PCM to the prediction of binding energies, and application of the concept in the fields of pharmacogenomics and toxicogenomics. This review is an update to a related publication in 2011 and it mainly focuses on developments in the field since then.

[1]  Klaus-Robert Müller,et al.  Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach , 2007, J. Chem. Inf. Model..

[2]  Nathanael Weill,et al.  Alignment-Free Ultra-High-Throughput Comparison of Druggable Protein-Ligand Binding Sites , 2010, J. Chem. Inf. Model..

[3]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[4]  E. Kimes,et al.  Evaluation of Vancomycin TDM Strategies: Prediction and Prevention of Kidney Injuries Based on Vancomycin TDM Results , 2023, Journal of Korean medical science.

[5]  S. Pickett,et al.  GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. , 2000, Journal of medicinal chemistry.

[6]  Jonathan D. Hirst,et al.  Contemporary QSAR Classifiers Compared , 2007, J. Chem. Inf. Model..

[7]  Peter Willett,et al.  Similarity methods in chemoinformatics , 2009, Annu. Rev. Inf. Sci. Technol..

[8]  Isidro Cortes-Ciriano,et al.  Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets , 2013, Journal of Cheminformatics.

[9]  Lei Yang,et al.  Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers , 2011, J. Chem. Inf. Model..

[10]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[11]  Markus Gruetter,et al.  Structural genomics: Open collaboration is key to new drugs , 2012, Nature.

[12]  Matt T Bianchi,et al.  Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity? , 2010, BMC pharmacology.

[13]  H. Mewes,et al.  Can we estimate the accuracy of ADME-Tox predictions? , 2006, Drug discovery today.

[14]  A. Persidis High-throughput screening , 1998, Bio/Technology.

[15]  Thomas Gärtner,et al.  Ligand Prediction from Protein Sequence and Small Molecule Information Using Support Vector Machines and Fingerprint Descriptors , 2009, J. Chem. Inf. Model..

[16]  P. Prusis,et al.  Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. , 2008, Bioorganic & medicinal chemistry.

[17]  D. Flower,et al.  Peptide binding to the HLA-DRB1 supertype: a proteochemometrics analysis. , 2010, European journal of medicinal chemistry.

[18]  G. V. van Westen,et al.  Structure-Based Identification of OATP1B1/3 Inhibitors , 2013, Molecular Pharmacology.

[19]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[20]  Martin Frank,et al.  Computation of Binding Energies Including Their Enthalpy and Entropy Components for Protein-Ligand Complexes Using Support Vector Machines , 2013, J. Chem. Inf. Model..

[21]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[22]  A. Hubbard,et al.  Toxicogenomic profiling of chemically exposed humans in risk assessment. , 2010, Mutation research.

[23]  Oakland J. Peters,et al.  Predicting new indications for approved drugs using a proteochemometric method. , 2012, Journal of medicinal chemistry.

[24]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[25]  Ben van Ommen,et al.  Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology , 2005, Expert review of proteomics.

[26]  D. Gloriam,et al.  Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design. , 2009, Journal of medicinal chemistry.

[27]  Nathanael Weill Chemogenomic approaches for the exploration of GPCR space. , 2011, Current topics in medicinal chemistry.

[28]  T. Lundstedt,et al.  Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions. , 2001, Biochimica et biophysica acta.

[29]  Elizabeth Yuriev,et al.  Challenges and advances in computational docking: 2009 in review , 2011, Journal of molecular recognition : JMR.

[30]  Jean-Philippe Vert,et al.  Virtual screening of GPCRs: An in silico chemogenomics approach , 2008, BMC Bioinformatics.

[31]  Stefan Knapp,et al.  Small‐Molecule Modulators for Epigenetics Targets , 2013, ChemMedChem.

[32]  Zhiwei Cao,et al.  Study on human GPCR-inhibitor interactions by proteochemometric modeling. , 2013, Gene.

[33]  R. Solé,et al.  The topology of drug-target interaction networks: implicit dependence on drug properties and target families. , 2009, Molecular bioSystems.

[34]  Pekka Tiikkainen,et al.  Estimating Error Rates in Bioactivity Databases , 2013, J. Chem. Inf. Model..

[35]  Julio Saez-Rodriguez,et al.  Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties , 2012, PloS one.

[36]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[37]  Natalia Artemenko,et al.  Distance Dependent Scoring Function for Describing Protein-Ligand Intermolecular Interactions , 2008, J. Chem. Inf. Model..

[38]  Evan Bolton,et al.  PubChem's BioAssay Database , 2011, Nucleic Acids Res..

[39]  Jun Gao,et al.  Screening of selective histone deacetylase inhibitors by proteochemometric modeling , 2012, BMC Bioinformatics.

[40]  John P. Overington,et al.  A ligand's-eye view of protein similarity , 2013, Nature Methods.

[41]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[42]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[43]  Jordi Mestres,et al.  Coverage and bias in chemical library design. , 2008, Current opinion in chemical biology.

[44]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[45]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[46]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[47]  W. Marsden I and J , 2012 .

[48]  Yanli Wang,et al.  Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review , 2012, The AAPS Journal.

[49]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[50]  Gerhard Klebe,et al.  Cavities Tell More than Sequences: Exploring Functional Relationships of Proteases via Binding Pockets , 2013, J. Chem. Inf. Model..

[51]  Ruben Abagyan,et al.  Pocketome: an encyclopedia of small-molecule binding sites in 4D , 2011, Nucleic Acids Res..

[52]  H Kubinyi,et al.  Chemogenomics in drug discovery. , 2006, Ernst Schering Research Foundation workshop.

[53]  J. Lehár,et al.  Systematic discovery of multicomponent therapeutics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Didier Rognan,et al.  A chemogenomic analysis of the transmembrane binding cavity of human G‐protein‐coupled receptors , 2005, Proteins.

[55]  Peter Gedeck,et al.  Global Free Energy Scoring Functions Based on Distance-Dependent Atom-Type Pair Descriptors , 2011, J. Chem. Inf. Model..

[56]  Anne E Carpenter,et al.  The Bromodomain Protein Brd4 Insulates Chromatin from DNA Damage Signaling , 2013, Nature.

[57]  Helena Strömbergsson,et al.  Quantitative chemogenomics: machine-learning models of protein-ligand interaction. , 2011, Current topics in medicinal chemistry.

[58]  D. Rognan,et al.  Identification of Nonpeptide Oxytocin Receptor Ligands by Receptor‐Ligand Fingerprint Similarity Search , 2011, Molecular informatics.

[59]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[60]  Yanli Wang,et al.  A novel method for mining highly imbalanced high-throughput screening data in PubChem , 2009, Bioinform..

[61]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[62]  Manfred J. Sippl,et al.  A note on difficult structure alignment problems , 2008, Bioinform..

[63]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[64]  Ola Spjuth,et al.  A Unified Proteochemometric Model for Prediction of Inhibition of Cytochrome P450 Isoforms , 2013, PloS one.

[65]  K. Fidelis,et al.  Generalized modeling of enzyme–ligand interactions using proteochemometrics and local protein substructures , 2006, Proteins.

[66]  John B. O. Mitchell,et al.  A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking , 2010, Bioinform..

[67]  Matthew Meyerson,et al.  Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. , 2007, Cancer cell.

[68]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[69]  Tapio Pahikkala,et al.  Toward more realistic drug^target interaction predictions , 2014 .

[70]  Ola Spjuth,et al.  Services for prediction of drug susceptibility for HIV proteases and reverse transcriptases at the HIV drug research centre , 2011, Bioinform..

[71]  Alexandre Varnek,et al.  Transductive Support Vector Machines: Promising Approach to Model Small and Unbalanced Datasets , 2013, Molecular informatics.

[72]  U Norinder,et al.  Determinants for DNA-binding site recognition by the glucocorticoid receptor. , 1992, The Journal of biological chemistry.

[73]  B. M. Fulk MATH , 1992 .

[74]  Scott D. Kahn,et al.  Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships , 2005, Alternatives to laboratory animals : ATLA.

[75]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[76]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[77]  Neil Genzlinger A. and Q , 2006 .

[78]  T. Lundstedt,et al.  Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. , 2002, Molecular pharmacology.

[79]  Gerard J. P. van Westen,et al.  Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data , 2013, PLoS Comput. Biol..

[80]  H. Kantarjian,et al.  The rise and fall of gatekeeper mutations? The BCR‐ABL1 T315I paradigm , 2012, Cancer.

[81]  P. Cohen Protein kinases — the major drug targets of the twenty-first century? , 2002, Nature reviews. Drug discovery.

[82]  Egon L. Willighagen,et al.  Linking the Resource Description Framework to cheminformatics and proteochemometrics , 2011, J. Biomed. Semant..

[83]  T. Malliavin,et al.  Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor , 2010, Proceedings of the National Academy of Sciences.

[84]  R C Wade,et al.  Nuclear receptor-DNA binding specificity: A COMBINE and Free-Wilson QSAR analysis. , 2000, Journal of medicinal chemistry.

[85]  Juwen Shen,et al.  Predicting protein–protein interactions based only on sequences information , 2007, Proceedings of the National Academy of Sciences.

[86]  Robert C. Glen,et al.  Classifying Molecules Using a Sparse Probabilistic Kernel Binary Classifier , 2011, J. Chem. Inf. Model..

[87]  Evi Kostenis,et al.  A physicogenetic method to assign ligand-binding relationships between 7TM receptors. , 2005, Bioorganic & medicinal chemistry letters.

[88]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[89]  Zhi-Ping Liu,et al.  Protein cavity clustering based on community structure of pocket similarity network , 2008, Int. J. Bioinform. Res. Appl..

[90]  Anne Mai Wassermann,et al.  Ligand Prediction for Orphan Targets Using Support Vector Machines and Various Target-Ligand Kernels Is Dominated by Nearest Neighbor Effects , 2009, J. Chem. Inf. Model..

[91]  Robert P. Sheridan,et al.  Using Random Forest To Model the Domain Applicability of Another Random Forest Model , 2013, J. Chem. Inf. Model..

[92]  Scott Boyer,et al.  Benchmarking Variable Selection in QSAR , 2012, Molecular informatics.

[93]  R. Glen,et al.  Molecular similarity: a key technique in molecular informatics. , 2004, Organic & biomolecular chemistry.

[94]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[95]  M. Vieth,et al.  Kinomics: characterizing the therapeutically validated kinase space. , 2005, Drug discovery today.

[96]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[97]  H. Yabuuchi,et al.  Analysis of multiple compound–protein interactions reveals novel bioactive molecules , 2011, Molecular systems biology.

[98]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[99]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[100]  Robert P. Sheridan,et al.  Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest , 2012, J. Chem. Inf. Model..

[101]  Ming-Ming Zhou,et al.  Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains. , 2013, Journal of medicinal chemistry.

[102]  F. Sheinerman,et al.  High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. , 2005, Journal of molecular biology.

[103]  Didier Rognan,et al.  sc-PDB: an Annotated Database of Druggable Binding Sites from the Protein Data Bank , 2006, J. Chem. Inf. Model..

[104]  Yasushi Okuno,et al.  GLIDA: GPCR-ligand database for chemical genomic drug discovery , 2005, Nucleic Acids Res..

[105]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[106]  Sekhar Surapaneni,et al.  ADME-enabling technologies in drug design and development , 2012 .

[107]  A. Siraki,et al.  Current status and future prospects of toxicogenomics in drug discovery. , 2014, Drug discovery today.

[108]  Peteris Prusis,et al.  Proteochemometric Mapping of the Interaction of Organic Compounds with Melanocortin Receptor Subtypes , 2005, Molecular Pharmacology.

[109]  Daniel Widmer,et al.  [Limited]. , 2020, Revue medicale suisse.

[110]  Yoshua Bengio,et al.  Collaborative Filtering on a Family of Biological Targets , 2006, J. Chem. Inf. Model..

[111]  Dong-Sheng Cao,et al.  Large-scale prediction of human kinase-inhibitor interactions using protein sequences and molecular topological structures. , 2013, Analytica chimica acta.

[112]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[113]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[114]  J. Komorowski,et al.  Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates. , 2009, Bioorganic & medicinal chemistry.

[115]  R. Sharan,et al.  PREDICT: a method for inferring novel drug indications with application to personalized medicine , 2011, Molecular systems biology.

[116]  H. J. Mclaughlin,et al.  Learn , 2002 .

[117]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[118]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[119]  Weida Tong,et al.  Mold2, Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics , 2008, J. Chem. Inf. Model..

[120]  Jarl E. S. Wikberg,et al.  Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques , 2010, BMC Bioinformatics.

[121]  L. Peshkin,et al.  Exploiting polypharmacology for drug target deconvolution , 2014, Proceedings of the National Academy of Sciences.

[122]  Martin S. Fridson,et al.  Trends , 1948, Bankmagazin.

[123]  Nathanael Weill,et al.  Development and Validation of a Novel Protein-Ligand Fingerprint To Mine Chemogenomic Space: Application to G Protein-Coupled Receptors and Their Ligands , 2009, J. Chem. Inf. Model..

[124]  D. Rognan Chemogenomic approaches to rational drug design , 2007, British journal of pharmacology.

[125]  Jos H. Beijnen,et al.  ADME‐Enabling Technologies in Drug Design and Development. Edited by Donglu Zhang and Sekhar Surapaneni , 2013 .

[126]  Renxiao Wang,et al.  The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. , 2004, Journal of medicinal chemistry.

[127]  T. Lundstedt,et al.  PLS modeling of chimeric MS04/MSH-peptide and MC1/MC3-receptor interactions reveals a novel method for the analysis of ligand-receptor interactions. , 2001, Biochimica et biophysica acta.

[128]  Federico Agostini,et al.  Predicting protein associations with long noncoding RNAs , 2011, Nature Methods.

[129]  Christian Kramer,et al.  QSARs, data and error in the modern age of drug discovery. , 2012, Current topics in medicinal chemistry.

[130]  H. V. van Vlijmen,et al.  Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development , 2011, PloS one.

[131]  Ola Spjuth,et al.  Proteochemometric Modeling of the Susceptibility of Mutated Variants of the HIV-1 Virus to Reverse Transcriptase Inhibitors , 2010, PloS one.

[132]  H. V. van Vlijmen,et al.  Identifying novel adenosine receptor ligands by simultaneous proteochemometric modeling of rat and human bioactivity data. , 2012, Journal of medicinal chemistry.

[133]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[134]  Alessandro Sette,et al.  The Immune Epitope Database 2.0 , 2009, Nucleic Acids Res..

[135]  Masahiko Nakatsui,et al.  Chemical Genomics Approach for GPCR-Ligand Interaction Prediction and Extraction of Ligand Binding Determinants , 2013, J. Chem. Inf. Model..

[136]  Doriano Fabbro,et al.  Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia , 2006, Acta crystallographica. Section D, Biological crystallography.

[137]  Isidro Cortes-Ciriano,et al.  Proteochemometric modeling in a Bayesian framework , 2014, Journal of Cheminformatics.

[138]  Peteris Prusis,et al.  Proteochemometric modeling of HIV protease susceptibility , 2008, BMC Bioinformatics.

[139]  Wei Deng,et al.  Predicting Protein-Ligand Binding Affinities Using Novel Geometrical Descriptors and Machine-Learning Methods , 2004, J. Chem. Inf. Model..

[140]  Zhiwei Cao,et al.  Proteochemometric Modeling of the Bioactivity Spectra of HIV-1 Protease Inhibitors by Introducing Protein-Ligand Interaction Fingerprint , 2012, PloS one.

[141]  Scott Boyer,et al.  Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination , 2014, J. Chem. Inf. Model..

[142]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[143]  R. Horuk,et al.  Chemokine receptor antagonists: overcoming developmental hurdles , 2009, Nature Reviews Drug Discovery.

[144]  Ljubomir J. Buturovic,et al.  Cross-validation pitfalls when selecting and assessing regression and classification models , 2014, Journal of Cheminformatics.

[145]  Eyke Hüllermeier,et al.  Functional Classification of Protein Kinase Binding Sites Using Cavbase , 2007, ChemMedChem.

[146]  Manuela Pavan,et al.  DRAGON SOFTWARE: AN EASY APPROACH TO MOLECULAR DESCRIPTOR CALCULATIONS , 2006 .

[147]  R. Prinjha,et al.  Place your BETs: the therapeutic potential of bromodomains. , 2012, Trends in pharmacological sciences.

[148]  E. Koonin Orthologs, Paralogs, and Evolutionary Genomics 1 , 2005 .

[149]  J. Mestres,et al.  A ligand-based approach to mining the chemogenomic space of drugs. , 2008, Combinatorial chemistry & high throughput screening.

[150]  Gerard J. P. van Westen,et al.  Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets , 2013, Journal of Cheminformatics.

[151]  H. Kubinyi,et al.  Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. , 1998, Journal of medicinal chemistry.

[152]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[153]  E. Jacoby,et al.  Chemogenomics: an emerging strategy for rapid target and drug discovery , 2004, Nature Reviews Genetics.

[154]  C. D. Andersson,et al.  Mapping of ligand‐binding cavities in proteins , 2010, Proteins.

[155]  S. Wold,et al.  New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. , 1998, Journal of medicinal chemistry.

[156]  Richard M. Jackson,et al.  Binding Site Similarity Analysis for the Functional Classification of the Protein Kinase Family , 2009, J. Chem. Inf. Model..

[157]  Wenkang Huang,et al.  HEMD: An Integrated Tool of Human Epigenetic Enzymes and Chemical Modulators for Therapeutics , 2012, PloS one.

[158]  L. Babiss,et al.  Toxicogenomics in predictive toxicology in drug development. , 2004, Chemistry & biology.

[159]  W. Sherman,et al.  Understanding Kinase Selectivity Through Energetic Analysis of Binding Site Waters , 2010, ChemMedChem.

[160]  P. Carrupt,et al.  Molecular fields in quantitative structure–permeation relationships: the VolSurf approach , 2000 .

[161]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[162]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[163]  I. Melnikova,et al.  Targeting protein kinases , 2004, Nature Reviews Drug Discovery.

[164]  Dong-Sheng Cao,et al.  Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics Approach , 2013, PloS one.

[165]  Leonid Kagan,et al.  Interspecies Scaling of Receptor-Mediated Pharmacokinetics and Pharmacodynamics of Type I Interferons , 2010, Pharmaceutical Research.

[166]  David A. Gough,et al.  Virtual Screen for Ligands of Orphan G Protein-Coupled Receptors , 2005, J. Chem. Inf. Model..

[167]  Holger Gohlke,et al.  Alignment-Independent Comparison of Binding Sites Based on DrugScore Potential Fields Encoded by 3D Zernike Descriptors , 2012, J. Chem. Inf. Model..

[168]  Gerard J. P. van Westen,et al.  Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets , 2011 .

[169]  Didier Rognan,et al.  Comparison and Druggability Prediction of Protein-Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes , 2012, J. Chem. Inf. Model..

[170]  CHUN WEI YAP,et al.  PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints , 2011, J. Comput. Chem..

[171]  Philip L. Lorenzi,et al.  Cancer: Discrepancies in drug sensitivity , 2013, Nature.

[172]  Peteris Prusis,et al.  Prediction of indirect interactions in proteins , 2006, BMC Bioinformatics.

[173]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[174]  C. Chung,et al.  Progress in the Discovery of Small-Molecule Inhibitors of Bromodomain–Histone Interactions , 2011, Journal of biomolecular screening.

[175]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[176]  Michael J. Keiser,et al.  Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets , 2012, Nature.

[177]  Z. R. Li,et al.  Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence , 2006, Nucleic Acids Res..

[178]  Sourav Das,et al.  Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures , 2010, J. Chem. Inf. Model..

[179]  E. Marcotte,et al.  A flaw in the typical evaluation scheme for pair-input computational predictions , 2012, Nature Methods.

[180]  Robert B. Russell,et al.  Combinations of Protein-Chemical Complex Structures Reveal New Targets for Established Drugs , 2011, PLoS Comput. Biol..

[181]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[182]  L. Buydens,et al.  Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel , 2006 .

[183]  Joshua C. Gilbert,et al.  An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules , 2013, Cell.

[184]  C. Chennubhotla,et al.  Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. , 2007, Current opinion in structural biology.

[185]  Jun Gao,et al.  Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines:a collaborative filtering method , 2012, BMC Bioinformatics.

[186]  Dong-Sheng Cao,et al.  propy: a tool to generate various modes of Chou's PseAAC , 2013, Bioinform..

[187]  P. Prusis,et al.  Visually Interpretable Models of Kinase Selectivity Related Features Derived from Field-Based Proteochemometrics , 2013, J. Chem. Inf. Model..

[188]  Igor Kononenko,et al.  An overview of advances in reliability estimation of individual predictions in machine learning , 2009, Intell. Data Anal..

[189]  Gerhard Klebe,et al.  SFCscore: Scoring functions for affinity prediction of protein–ligand complexes , 2008, Proteins.

[190]  P. Prusis,et al.  Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B-NS3 proteases. , 2013, Biochemical and biophysical research communications.

[191]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[192]  Susan P. Holmes,et al.  A multifaceted analysis of HIV-1 protease multidrug resistance phenotypes , 2011, BMC Bioinformatics.

[193]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.

[194]  Nathan Brown,et al.  Druggability Analysis and Structural Classification of Bromodomain Acetyl-lysine Binding Sites , 2012, Journal of medicinal chemistry.

[195]  A. Vulpetti,et al.  Comparability of Mixed IC50 Data – A Statistical Analysis , 2013, PloS one.

[196]  P. Hajduk,et al.  Navigating the kinome. , 2011, Nature chemical biology.

[197]  Shandar Ahmad,et al.  Proteochemometric Recognition of Stable Kinase Inhibition Complexes Using Topological Autocorrelation and Support Vector Machines , 2010, J. Chem. Inf. Model..

[198]  Benjamin Haibe-Kains,et al.  Inconsistency in large pharmacogenomic studies , 2013, Nature.

[199]  Peter Gedeck,et al.  Three Descriptor Model Sets a High Standard for the CSAR-NRC HiQ Benchmark , 2011, J. Chem. Inf. Model..

[200]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[201]  A. Vulpetti,et al.  The experimental uncertainty of heterogeneous public K(i) data. , 2012, Journal of medicinal chemistry.

[202]  G. Schneider,et al.  Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands. , 2014, Angewandte Chemie.

[203]  Maria F. Sassano,et al.  A Pharmacological Organization of G Protein-coupled Receptors , 2012, Nature Methods.

[204]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[205]  Satoshi Niijima,et al.  Dissecting Kinase Profiling Data to Predict Activity and Understand Cross-Reactivity of Kinase Inhibitors , 2012, J. Chem. Inf. Model..

[206]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[207]  A. Bender,et al.  Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off‐Target Effects from Chemical Structure , 2007, ChemMedChem.

[208]  John P. Overington,et al.  Chemogenomics approaches for receptor deorphanization and extensions of the chemogenomics concept to phenotypic space. , 2011, Current topics in medicinal chemistry.

[209]  Didier Rognan,et al.  Enhancing the Accuracy of Chemogenomic Models with a Three-Dimensional Binding Site Kernel , 2011, J. Chem. Inf. Model..

[210]  George Karypis,et al.  Multi-Assay-Based Structure-Activity Relationship Models: Improving Structure-Activity Relationship Models by Incorporating Activity Information from Related Targets , 2009, J. Chem. Inf. Model..

[211]  David DeCaprio,et al.  Cheminformatics approaches to analyze diversity in compound screening libraries. , 2010, Current opinion in chemical biology.

[212]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[213]  Scott Boyer,et al.  Choosing Feature Selection and Learning Algorithms in QSAR , 2014, J. Chem. Inf. Model..

[214]  A. Tropsha,et al.  Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. , 2006, Journal of medicinal chemistry.

[215]  C. Bountra,et al.  Epigenetic protein families: a new frontier for drug discovery , 2012, Nature Reviews Drug Discovery.

[216]  John P. Overington,et al.  Global Analysis of Small Molecule Binding to Related Protein Targets , 2012, PLoS Comput. Biol..

[217]  Michael Bieler,et al.  The Role of Chemogenomics in the Pharmaceutical Industry , 2012 .