emissions: application to the Sahara desert

AbstractMineral dust emissions from arid regions are influenced by the surface features encountered in the source regions. These surface features control both the erosion threshold and the intensity of the dust flux. Recently, a soil-derived dust emission scheme has been designed in order to provide an explicit representation of the mineral dust accounting for the influence of the surface features on the dust emissions. This physical scheme has been validated with micro-scale field measurements. Its large scale application has required the development of additional relations to estimate the input parameters from more accessible data: the mean height and the covering rate of the roughness elements and the min-eralogical soil type. The determination of these surface data has been based on a geomorphologic approach which describes the surface features of arid areas in a 1 × l° grid. Inside each square degree, up to five different areas characterised by different surface features have been distinguished. Howe...

[1]  Y. Callot Géomorphologie et paléoenvironnements de l'atlas saharien au grand erg occidental : dynamique éolienne et paléo-lacs holocènes , 1987 .

[2]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[3]  N. Petit-Maire Interglacial Environments in Presently Hyperarid Sahara : Palaeoclimatic Implications , 1989 .

[4]  G. Bergametti,et al.  Assessing the actual size distribution of atmospheric aerosols collected with a cascade impactor , 1990 .

[5]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[6]  J. Prospero,et al.  Wind velocities associated with dust deflation events in the Western Sahara , 1987 .

[7]  J. Jouzel,et al.  Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions: 2. Water isotopes , 1993 .

[8]  G. Coudé-Gaussen Les poussières sahariennes , 1991 .

[9]  W. Chepil PROPERTIES OF SOIL WHICH INFLUENCE WIND EROSION: IV. STATE OF DRY AGGREGATE STRUCTURE , 1951 .

[10]  B. Marticorena,et al.  Assessing the microped size distributions of desert soils erodible by wind , 1996 .

[11]  R. Escadafal Caracterisation de la surface des sols arides par observations de terrain et par teledetection , 1989 .

[12]  Jean Dubief Le climat du Sahara , 1961 .

[13]  M. Sarnthein,et al.  Paleoclimatology and paleometeorology : modern and past patterns of global atmospheric transport , 1989 .

[14]  K. Pye Aeolian dust and dust deposits , 1987 .

[15]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[16]  William G. Nickling,et al.  The initiation of particle movement by wind , 1988 .

[17]  Y. Callot Evolution polyphasee d'un massif dunaire subtropical; le Grand Erg occidental (Algerie) , 1988 .

[18]  Michel Legrand,et al.  Satellite-derived climatology of the Saharan aerosol , 1994, Remote Sensing.

[19]  Y. Callot Paléolacs holocènes du nord du Grand Erg occidental (NW du Sahara algérien) , 1992 .

[20]  Yann Callot,et al.  Image-analysis and cartography of sand hill massifs on high resolution images: application to the Great Western Erg (NW of Algerian Sahara) , 1994 .

[21]  William G. Nickling,et al.  Emission of Fine-Grained Particulates from Desert Soils , 1989 .

[22]  G. d’Almeida,et al.  A model for Saharan dust transport , 1986 .

[23]  D. Gillette,et al.  Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air , 1982 .

[24]  Y. Callot,et al.  Géodynamique des sables éoliens dans le Nord-Ouest saharien : relations entre aérologie et géomorphologie , 1996 .

[25]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[26]  Dale A. Gillette,et al.  Formation of Wind-Erodible Aggregates for Salty Soils and Soils with Less Than 50% Sand Composition in Natural Terrestrial Environments , 1989 .

[27]  K. Pye Sediment transport and depositional processes , 1994 .

[28]  B. White,et al.  Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments] , 1976 .

[29]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .

[30]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[31]  L. Blanc-Vernet,et al.  Sahara ou Sahel? : quaternaire récent du bassin de Taoudenni (Mali) , 1983 .

[32]  P. Rognon Climatic change in the African deserts between 130,000 and 10,000 y BP , 1996 .

[33]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[34]  Y. Callot,et al.  Les étagements de nappes dans les paléolacs holocènes du nord-est du Grand Erg Occidental (Algérie) , 1992 .

[35]  W. Nickling The stabilizing role of bonding agents on the entrainment of sediment by wind , 1984 .

[36]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[37]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[38]  Edwin Dinwiddie McKee,et al.  A study of global sand seas , 1979 .

[39]  M. Mainguet,et al.  L'erg de Fachi-Bilma, Tchad-Niger : contribution à la connaissance de la dynamique des ergs et des dunes des zones arides chaudes , 1978 .