Mathematical Optimization in Robotics: Towards Automated High Speed Motion Planning

\def\KukaRob {{\sf KUKA IR\,761}} {\small Industrial robots have greatly enhanced the performance of automated manufacturing processes during the last decades. International competition, however, creates an increasing demand to further improve both the accuracy of off-line programming and the resulting cycle times on production lines. To meet these objectives, validated dynamic robot models are required. We describe in detail the development of a generic dynamic model, specialize it to an actual industrial robot \KukaRob, and discuss the problem of dynamic calibration. Efficient and robust trajectory optimization algorithms are then presented which, when integrated into a CAD system, are suitable for routine application in an industrial environment. Our computational results for the \KukaRob\ robot performing a real life transport maneuver show that considerable gains in productivity can be achieved by minimizing the cycle time.}

[1]  S. Lupuleac,et al.  On spatial variational problems in the gas lubrication theory , 1996 .

[2]  Volker Schulz,et al.  Reduced SQP Methods for Large-Scale Optimal Control Problems in DAE with Application to Path Plannin , 1996 .

[3]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[4]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[5]  J. Betts,et al.  Path constrained trajectory optimization using sparse sequential quadratic programming , 1991 .

[6]  P. Rentrop,et al.  Differential-algebraic Equations in Vehicle System Dynamics , 1991 .

[7]  Felix L. Chernousko,et al.  Manipulation Robots: Dynamics, Control and Optimization , 1994 .

[8]  Hans Bock,et al.  Time optimal trajectories of elbow robots by direct methods , 1989 .

[9]  R. Longman,et al.  Time-optimal extension and retraction of robots: Numerical analysis of the switching structure , 1995 .

[10]  Warren P. Seering,et al.  Modeling a harmonic drive gear transmission , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[11]  G. V. Kostin Modeling the controlled motions of an electromechanical manipulation robot with elastic links , 1992 .

[12]  Hans Bock,et al.  Path Planning For Satellite Mounted Robots , 1970 .

[13]  V. Schulz,et al.  A direct PRSQP method for path planning of satellite mounted robots , 1996 .

[14]  G. Reinelt,et al.  Fast Recursive SQP MethodsforLarge-Scale Optimal Control Problems , 1995 .

[15]  V. H. Schulz Optimal paths for satellite mounted robots , 1996 .

[16]  Giovanni Legnani,et al.  On robot calibration , 1992 .

[17]  N. N. Bolotnik,et al.  Optimization of manipulation robot control , 1990 .

[18]  Hans Bock,et al.  Issues in the implementation of time-optimal robot path planning , 1997 .

[19]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[20]  Michael J. Winckler,et al.  Simulating vehicle systems with discontinuous effects using MBSSIM , 1996 .

[21]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .

[22]  Oskar von Stryk,et al.  Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen , 1994 .

[23]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[24]  Structured Interior Point Sqp Methods in Optimal Control , 1996 .

[25]  J. Betts,et al.  Path-constrained trajectory optimization using sparse sequential quadratic programming , 1991 .

[26]  Marc C. Steinbach,et al.  Exploiting Invariants in the Numerical Solution of Multipoint Boundary Value Problems for DAE , 1998, SIAM J. Sci. Comput..

[27]  Hans Bock,et al.  Time optimal control of SCARA robots , 1990 .

[28]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[29]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[30]  Abhinandan Jain Unified formulation of dynamics for serial rigid multibody systems , 1991 .

[31]  Hans Bock,et al.  A Multiple Shooting Method for Numerical Computation of Open and Closed Loop Controls in Nonlinear Systems , 1984 .

[32]  Johannes P. Schlöder,et al.  Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung , 1988 .

[33]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[34]  Hans Bock,et al.  Schnelle Roboter am Fließband: Mathematische Bahnoptimierung in der Praxis , 1997 .

[35]  Peter Krämer-Eis,et al.  Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen , 1985 .

[36]  A. Guez Optimal control of robotic manipulators , 1983 .

[37]  Marc C. Steinbach,et al.  A structured interior point SQP method for nonlinear optimal control problems , 1994 .

[38]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[39]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  P. Chedmail,et al.  Characterization Of The Friction Parameters OfHarmonic Drive Actuators , 1970 .