Fatigue crack growth and damage tolerance

The problems arising as a result of aging aircraft, rail and civil infrastructure have focused attention on tools for predicting the growth of cracks from small naturally occurring material discontinuities. To this end, the present paper discusses on the difference between the analysis tools needed for ab initio design and sustainment, modelling of cracks that grow from small naturally occurring material discontinuities and ways to determine the short crack da/dN versus ΔK data from long crack American Society for Testing and Materials (ASTM) tests. It also discusses how existing equations can be used to predict short crack growth and how to account for the variations seen in crack growth histories. Attention is also focused on the recent Federal Aviation Administration limit of validity ruling and the effect of the environment on widespread fatigue damage in civil transport aircraft.

[1]  M. Skorupa,et al.  Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review. Part II: qualitative interpretation , 1999 .

[2]  Lorrie Molent,et al.  Environmental evaluation of repairs to fuselage lap joints , 1992 .

[3]  H. W. Liu,et al.  A quantitative analysis of structure sensitive fatigue crack growth in steels , 1984 .

[4]  Andrea Carpinteri,et al.  A fractal analysis of size effect on fatigue crack growth , 2004 .

[5]  Arthur J. McEvily,et al.  The rate of fatigue-crack propagation in two aluminum alloys , 1958 .

[6]  S. Pearson Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks , 1975 .

[7]  L. Molent,et al.  Crack growth of physically small cracks , 2007 .

[8]  R. Pippan,et al.  The use of fatigue specimens precracked in compression for measuring threshold values and crack growth , 1994 .

[9]  G. C. Sih,et al.  On the westergaard method of crack analysis , 1966 .

[10]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[11]  Norio Kawagoishi,et al.  Significance of the small crack growth law and its practical application , 2000 .

[12]  A. Hartman,et al.  The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys , 1970 .

[13]  M. James,et al.  Mechanical Data for Use in Damage Tolerance Analyses , 2013 .

[14]  Lorrie Molent,et al.  A comparison of crack growth behaviour in several full-scale airframe fatigue tests , 2007 .

[15]  C. Rodopoulos Evolution of fatigue damage using the fatigue damage map method , 2006 .

[16]  A. J. Mcevily,et al.  Prediction of the behavior of small fatigue cracks , 2007 .

[17]  Richard W. Hertzberg,et al.  Simulation of Short Crack and Other Low Closure Loading Conditions Utilizing Constant K max Δ K -Decreasing Fatigue Crack Growth Procedures , 1992 .

[18]  Lorrie Molent,et al.  Fatigue crack growth in a diverse range of materials , 2012 .

[19]  G. Samavedam,et al.  Test Facility for Evaluation of Structural Integrity of Stiffened & Jointed Aircraft Curved Panels , 1991 .

[20]  Paul C. Paris,et al.  Service load fatigue damage — a historical perspective , 1999 .

[21]  G. Glinka,et al.  A two parameter driving force for fatigue crack growth analysis , 2005 .

[22]  Rhys Jones,et al.  An experimental evaluation of crack face energy dissipation , 2006 .

[23]  B. Farahmand Virtual Testing and Predictive Modeling , 2009 .

[24]  H. W. Liu Fatigue Crack Propagation and Applied Stress Range—An Energy Approach , 1963 .

[25]  Harold Liebowitz,et al.  Load biaxiality and fracture - Synthesis and summary , 1990 .

[26]  Kenneth L. Fishman,et al.  LRFD Metal Loss and Service-Life Strength Reduction Factors for Metal-Reinforced Systems , 2011 .

[27]  Elisabeth Bouchaud,et al.  Scaling properties of cracks , 1997 .

[28]  T. Machniewicz Fatigue crack growth prediction models for metallic materials , 2013 .

[29]  Daniel Kujawski Utilization of partial crack closure for fatigue crack growth modeling , 2002 .

[30]  R. S. Vecchio,et al.  The influence of specimen geometry on near threshold fatigue crack growth , 1987 .

[31]  Dietmar Eifler,et al.  An analysis of the growth of short fatigue cracks , 1991 .

[32]  Andrea Spagnoli,et al.  Self-similarity and fractals in the Paris range of fatigue crack growth , 2005 .

[33]  G. Härkegård,et al.  Fatigue Design & Material Defects , 2012 .

[34]  James C. Newman,et al.  The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective , 1998 .

[35]  J. Newman,et al.  Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel , 2013 .

[36]  M. Skorupa Load interaction effects during fatigue crack growth under variable amplitude loading : A literature review. Part I : Empirical trends , 1998 .

[37]  David Goldberg,et al.  The Fix We’re In For: The State of Our Nation’s Bridges 2013 , 2011 .

[38]  K George,et al.  Use of ACR Method to Estimate Closure and Residual Stress Free Small Crack Growth Data , 2005 .

[39]  J. Schijve,et al.  Four lectures on fatigue crack growth: IV. Fatigue crack growth under variable-amplitude loading , 1979 .

[40]  Stefano Beretta,et al.  Modelling of fatigue thresholds for small cracks in a mild steel by “Strip-Yield” model , 2009 .

[41]  James C. Newman,et al.  Crack-closure behavior of 2324-T39 aluminum alloy near-threshold conditions for high load ratio and constant Kmax tests , 2009 .

[42]  Daniel Kujawski On assumptions associated with ΔKeff and their implications on FCG predictions , 2005 .

[43]  D. Lados,et al.  An integrated methodology for separating closure and residual stress effects from fatigue crack growth rate data , 2007 .

[44]  S. Dinda,et al.  Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters , 2004 .

[45]  James A. Harter,et al.  AFGROW Users Guide and Technical Manual , 1999 .

[46]  Nisitani Hironobu,et al.  A small-crack growth law and its related phenomena , 1992 .

[47]  Fu-Pen Chiang,et al.  Damage of Al 2024 alloy due to sequential exposure to fatigue, corrosion and fatigue , 1998 .

[48]  R. Eastin,et al.  'WFD' ― What is it and what's 'LOV' got to do with it? , 2009 .

[49]  Jaap Schijve,et al.  Fatigue of Structures and Materials in the 20th Century and the State of the Art. , 2003 .

[50]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[51]  Pietro Cornetti,et al.  New unified laws in fatigue: From the Wohler's to the Paris' regime , 2007 .

[52]  Walter Schütz,et al.  A history of fatigue , 1996 .

[53]  M. N. James,et al.  Characterisation of plasticity-induced closure––crack flank contact force versus plastic enclave , 2003 .

[54]  J. Benthem State of stress at the vertex of a quarter-infinite crack in a half-space , 1977 .

[55]  Zili Li,et al.  Axle box acceleration: Measurement and simulation for detection of short track defects , 2011 .

[56]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[57]  James C. Newman,et al.  A mechanics based study of crack closure measurement techniques under constant amplitude loading , 2011 .

[58]  Service fatigue cracking in an aircraft bulkhead exposed to a corrosive environment , 2013 .

[59]  Satya N. Atluri,et al.  An Embedded Elliptical Crack, in an Infinite Solid, Subject to Arbitrary Crack-Face Tractions , 1981 .

[60]  James C. Newman,et al.  Crack closure under high load ratio and Kmax test conditions , 2010 .

[61]  Robert O. Ritchie,et al.  Small fatigue cracks: A statement of the problem and potential solutions , 1986 .

[62]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[63]  J. M. Larsen,et al.  Incorporating small fatigue crack growth in probabilistic life prediction: Effect of stress ratio in Ti–6Al–2Sn–4Zr–6Mo , 2013 .

[64]  Hans Albert Richard,et al.  Fatigue crack growth under variable amplitude loading Part II: analytical and numerical investigations , 2006 .

[65]  Lorrie Molent,et al.  An experimental evaluation of fatigue crack growth , 2005 .

[66]  G. C. Sih,et al.  Application of supersonic particle deposition to enhance the structural integrity of aircraft structures , 2014 .

[67]  R. S. Vecchio,et al.  A rationale for the “apparent anomalous” growth behavior of short fatigue cracks , 1985 .

[68]  A. Merati A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3 , 2005 .

[69]  Damir Tadjiev,et al.  Fatigue Life Prediction under Random Loading Conditions in 7475-T7351 Aluminum Alloy using the RMS Model , 2006 .

[70]  Brad L. Boyce,et al.  Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V , 2001 .

[71]  Modeling of Multiscale Fatigue Crack Growth: Nano/Micro and Micro/Macro Transitions , 2009 .

[72]  R. Pippan THE GROWTH OF SHORT CRACKS UNDER CYCLIC COMPRESSION , 1987 .

[73]  Rhys Jones,et al.  Implications of the lead crack philosophy and the role of short cracks in combat aircraft , 2013 .

[74]  K. F. Walker,et al.  Comparison of Analytical Crack Growth Modelling and the A-4 Wing Test Experimental Results for a Fatigue Crack in an F-111 Wing Pivot Fitting Fuel Flow Hole Number 58. , 1997 .

[75]  D. S. Dugdale,et al.  The propagation of fatigue cracks in sheet specimens , 1958 .

[76]  J. Gallagher,et al.  Developing Normalized Crack Growth Curves for Tracking Damage in Aircraft , 1978 .

[77]  James L. Rudd Applications of the Equivalent Initial Quality Method , 1977 .

[78]  G. C. Sih,et al.  Form-invariant representation of fatigue crack growth rate enabling linearization of multiscale data , 2007 .

[79]  James C. Newman,et al.  Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method , 2012 .

[80]  Arthur J. McEvily,et al.  On the dependence of the rate of fatigue crack growth on the σna(2a) parameter , 2001 .

[81]  J. Lankford,et al.  Fatigue crack growth in metals and alloys: mechanisms and micromechanics , 1992 .

[82]  R.J.H. Wanhill,et al.  Fatigue and corrosion in aircraft pressure cabin lap splices , 2000 .

[83]  K. Tanaka,et al.  Fatigue growth threshold of small cracks , 1981, International Journal of Fracture.

[84]  Pavel Hutař,et al.  Quantification of the effect of specimen geometry on the fatigue crack growth response by two-parameter fracture mechanics , 2004 .

[85]  Rhys Jones,et al.  Tools and methods for addressing the durability of rolling stock , 2013 .

[86]  Benoit B. Mandelbrot,et al.  Fractal Analysis and Synthesis of Fracture Surface Roughness and Related Forms of Complexity and Disorder , 2006 .

[87]  Russell Wanhill,et al.  The lead crack fatigue lifing framework , 2011 .

[88]  Alberto Carpinteri,et al.  A unified interpretation of the power laws in fatigue and the analytical correlations between cyclic properties of engineering materials , 2009 .

[89]  Tomasz Machniewicz Fatigue crack growth prediction models for metallic materials Part II: Strip yield model - choices and decisions , 2013 .

[90]  Lorrie Molent Managing Fatigue from Corrosion Pits in Aircraft Structures , 2014 .

[91]  Bernard Chen,et al.  The tool for assessing the damage tolerance of railway wheel under service conditions , 2012 .

[92]  F. R. Shanley A THEORY OF FATIGUE BASED ON UNBONDING DURING REVERSED SLIP , 1952 .

[93]  Adriano Francisco Siqueira,et al.  On the Determination of a Scatter Factor for Fatigue Lives Based on the Lead Crack Concept , 2013 .

[94]  Russell Wanhill,et al.  Typical fatigue-initiating discontinuities in metallic aircraft structures , 2012 .

[95]  Susan Pitt,et al.  Observations on fatigue crack growth in a range of materials , 2011 .

[96]  Robert O. Ritchie,et al.  AN ANALYSIS OF CRACK TIP SHIELDING IN ALUMINUM ALLOY 2124: A COMPARISON OF LARGE, SMALL, THROUGH‐THICKNESS AND SURFACE FATIGUE CRACKS , 1987 .

[97]  S. A. Fawaz Equivalent initial flaw size testing and analysis of transport aircraft skin splices , 2003 .

[98]  Nam Phan,et al.  Aircraft life management using crack initiation and crack growth models – P-3C Aircraft experience , 2007 .

[99]  Daniel Kujawski,et al.  Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys , 2001 .

[100]  K. J. Miller,et al.  THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART I—A REVIEW OF TWO RECENT BOOKS , 1987 .

[101]  James Lankford,et al.  THE GROWTH OF SMALL FATIGUE CRACKS IN 7075–T6 ALUMINUM , 1982 .

[102]  Joseph P. Gallagher,et al.  Threats to Aircraft Structural Safety Including a Compendium of Selected Structural Accidents/Incidents , 2010 .

[103]  A. K. Head XCVIII. The growth of fatigue cracks , 1953 .

[104]  Richard P. Gangloff,et al.  Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu , 2009 .

[105]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[106]  Pedro Albrecht,et al.  ATMOSPHERIC CORROSION RESISTANCE OF STRUCTURAL STEELS , 2003 .

[107]  Robert O. Ritchie,et al.  ON THE BEHAVIOR OF SMALL FATIGUE CRACKS IN COMMERCIAL ALUMINUM-LITHIUM ALLOYS , 1988 .

[108]  Paul C. Paris,et al.  An evaluation of ΔKeff estimation procedures on 6061-T6 and 2024-T3 aluminum alloys , 1999 .

[109]  G. C. Sih,et al.  Multiscaling in molecular and continuum mechanics: interaction of time and size from macro to nano : application to biology, physics, material science, mechanics, structural and processing engineering , 2007 .

[110]  J. N. Yang,et al.  Probabilistic Fracture Mechanics Analysis Methods for Structural Durability , 1983 .

[111]  J. Schijve Fatigue life until small cracks in aircraft structures: Durability and damage tolerance , 1994 .

[112]  Pin Tong,et al.  Onset of multiple site damage and widespread fatigue damage in aging airplanes , 1997 .

[113]  Reji John,et al.  Stress Ratio Effects on Small Fatigue Crack Growth in Ti-6Al-4V (Preprint) , 2008 .

[114]  John W. Lincoln,et al.  Economic Life Determination for a Military Aircraft , 1999 .

[115]  Diran Apelian,et al.  Closure mechanisms in Al–Si–Mg cast alloys and long-crack to small-crack corrections , 2005 .

[116]  G. C. Sih,et al.  Mixed mode fatigue crack growth predictions , 1980 .

[117]  L Molent Managing fatigue from corrosion pits - a proposal , 2013 .

[118]  Paul C. Paris,et al.  Reflections on identifying the real ΔKeffective in the threshold region and beyond , 2008 .

[119]  Royce Forman,et al.  Fatigue Crack Growth Database for Damage Tolerance Analysis , 2005 .

[120]  James C. Newman,et al.  Improved test method for very low fatigue‐crack‐growth‐rate data , 2008 .

[121]  W. Z. Zhuang,et al.  Effective Block Approach for Aircraft Damage Tolerance Analyses , 2009 .

[122]  M. Liao,et al.  Modeling the effects of prior exfoliation corrosion on fatigue life of aircraft wing skins , 2003 .

[123]  David L. Davidson,et al.  The dependence of crack closure on fatigue loading variables , 1988 .

[124]  Lorrie Molent,et al.  Calculating crack growth from small discontinuities in 7050-T7451 under combat aircraft spectra , 2013 .

[125]  R.J.H. Wanhill,et al.  Characteristic stress intensity factor correlations of fatigue crack growth in high strength alloys: reviews and completion of NLR investigations 1985-1990 , 2009 .

[126]  Lorrie Molent,et al.  Marker loads for quantitative fractography of fatigue cracks in aerospace alloys , 2009 .

[127]  A. P. Berens,et al.  Analysis and Support Initiative for Structural Technology (ASIST) Delivery Order 0016: USAF Damage Tolerant Design Handbook: Guidelines For the Analysis and Design of Damage Tolerant Aircraft Structures , 2002 .

[128]  Manfred A. Hirt,et al.  Fatigue crack propagation in steels , 1983 .

[129]  J. Schijve,et al.  Some formulas for the crack opening stress level , 1980 .

[130]  M. James,et al.  Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials , 2008 .