Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation

This is a review of the anatomical characteristics of human cochlea and the importance of variations in this anatomy to the process of cochlear implantation (CI). Studies of the human cochlea are essential to better comprehend the physiology and pathology of man's hearing. The human cochlea is difficult to explore due to its vulnerability and bordering capsule. Inner ear tissue undergoes quick autolytic changes making investigations of autopsy material difficult, even though excellent results have been presented over time. Important issues today are novel inner ear therapies including CI and new approaches for inner ear pharmacological treatments. Inner ear surgery is now a reality, and technical advancements in the design of electrode arrays and surgical approaches allow preservation of remaining structure/function in most cases. Surgeons should aim to conserve cochlear structures for future potential stem cell and gene therapies. Renewal interest of round window approaches necessitates further acquaintance of this complex anatomy and its variations. Rough cochleostomy drilling at the intricate “hook” region can generate intracochlear bone‐dust‐inducing fibrosis and new bone formation, which could negatively influence auditory nerve responses at a later time point. Here, we present macro‐ and microanatomic investigations of the human cochlea viewing the extensive anatomic variations that influence electrode insertion. In addition, electron microscopic (TEM and SEM) and immunohistochemical results, based on specimens removed at surgeries for life‐threatening petroclival meningioma and some well‐preserved postmortal tissues, are displayed. These give us new information about structure as well as protein and molecular expression in man. Our aim was not to formulate a complete description of the complex human anatomy but to focus on aspects clinically relevant for electric stimulation, predominantly, the sensory targets, and how surgical atraumaticity best could be reached. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.

[1]  F. Linthicum,et al.  Expression of myelin basic protein in the human auditory nerve - an immunohistochemical and comparative study. , 2012, Auris, nasus, larynx.

[2]  John K. Niparko,et al.  Cochlear Coiling Pattern and Orientation Differences in Cochlear Implant Candidates , 2011, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[3]  H. Rask-Andersen,et al.  Expression of TrkB and BDNF in human cochlea—an immunohistochemical study , 2011, Cell and Tissue Research.

[4]  Anneliese Schrott-Fischer,et al.  Anatomy of the human cochlea – implications for cochlear implantation , 2011, Cochlear implants international.

[5]  H. Rask-Andersen,et al.  Expression of peripherin in human cochlea , 2010, Cell and Tissue Research.

[6]  H. Versnel,et al.  Chronic electrical stimulation does not prevent spiral ganglion cell degeneration in deafened guinea pigs , 2010, Hearing Research.

[7]  Timothy Beale,et al.  Developmental Changes in Cochlear Orientation-Implications for Cochlear Implantation , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[8]  K. Pfaller,et al.  Immunolocalization of prestin in the human cochlea , 2010 .

[9]  Martin Westhofen,et al.  The Internal Dimensions of the Cochlear Scalae With Special Reference to Cochlear Electrode Insertion Trauma , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[10]  Luca Ferrarini,et al.  Anatomic Considerations of Cochlear Morphology and Its Implications for Insertion Trauma in Cochlear Implant Surgery , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[11]  H. Rask-Andersen,et al.  Unique expression of connexins in the human cochlea , 2009, Hearing Research.

[12]  Helge Rask-Andersen,et al.  Variational Anatomy of the Human Cochlea: Implications for Cochlear Implantation , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[13]  Peter Dallos,et al.  Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification , 2008, Neuron.

[14]  Robert K. Shepherd,et al.  Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? , 2007, Hearing Research.

[15]  K. Pfaller,et al.  Perilymph/Modiolar Communication Routes in the Human Cochlea , 2006, Ear and hearing.

[16]  Mary Ann Cheatham,et al.  Prestin and the cochlear amplifier , 2006, The Journal of physiology.

[17]  J. Fayad,et al.  Multichannel Cochlear Implants: Relation of Histopathology to Performance , 2006, The Laryngoscope.

[18]  J. Fayad,et al.  Human Cochleae With Three Turns: An Unreported Malformation , 2006, The Laryngoscope.

[19]  Alán Alpár,et al.  Development and surgical anatomy of the round window niche. , 2006, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[20]  H. Rask-Andersen,et al.  Innervation of the Apical Turn of the Human Cochlea: A Light Microscopic and Transmission Electron Microscopic Investigation , 2006, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[21]  Stephanie B. Epp,et al.  Chronic depolarization enhances the trophic effects of brain‐derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss , 2005, The Journal of comparative neurology.

[22]  Donald K. Eddington,et al.  Effect of Cochlear Implantation on Residual Spiral Ganglion Cell Count as Determined by Comparison with the Contralateral Nonimplanted Inner Ear in Humans , 2005, The Annals of otology, rhinology, and laryngology.

[23]  J. Nadol,et al.  Is Word Recognition Correlated With the Number of Surviving Spiral Ganglion Cells and Electrode Insertion Depth in Human Subjects With Cochlear Implants? , 2005, The Laryngoscope.

[24]  K. Pfaller,et al.  High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens , 2005, Hearing Research.

[25]  R. Illing,et al.  The human round window – a perilymph pressure regulator?On a novel mechanoreceptor‐like neuron in the human round window membrane , 2004 .

[26]  Yehoash Raphael,et al.  Structure and innervation of the cochlea , 2003, Brain Research Bulletin.

[27]  K. Kawamoto,et al.  Glial cell line‐derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation , 2002, The Journal of comparative neurology.

[28]  M. Eybalin,et al.  Patterns of GABA-like immunoreactivity in efferent fibers of the human cochlea , 2002, Hearing Research.

[29]  T. Boettger,et al.  Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4 , 2002, Nature.

[30]  O. Henson,et al.  Immunolabeling type II collagen in the basilar membrane, a pre-embedding approach , 2002, Hearing Research.

[31]  M. Tekin,et al.  Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. , 2001, Human molecular genetics.

[32]  A. Kreczy,et al.  Connexin 26 in human fetal development of the inner ear , 2001, Hearing Research.

[33]  Donald K. Eddington,et al.  Histopathology of Cochlear Implants in Humans , 2001, The Annals of otology, rhinology, and laryngology.

[34]  P. Santi,et al.  Proteoglycan arrays in the cochlear basement membrane , 2001, Hearing Research.

[35]  Helge Rask-Andersen,et al.  A 3-D model of membrane specializations between human auditory spiral ganglion cells , 2001, Journal of neurocytology.

[36]  Frank Rattay,et al.  A model of the electrically excited human cochlear neuron I. Contribution of neural substructures to the generation and propagation of spikes , 2001, Hearing Research.

[37]  Frank Rattay,et al.  A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability , 2001, Hearing Research.

[38]  J. Nadol Histopathology of Residual and Recurrent Conductive Hearing Loss After Stapedectomy , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[39]  J. Nadol,et al.  Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers , 2001, The Journal of comparative neurology.

[40]  Jing Zheng,et al.  Prestin is the motor protein of cochlear outer hair cells , 2000, Nature.

[41]  R. Illing,et al.  Synapses on human spiral ganglion cells: a transmission electron microscopy and immunohistochemical study , 2000, Hearing Research.

[42]  Anneliese Schrott-Fischer,et al.  Structural/audiometric correlations in a human inner ear with noise-induced hearing loss , 2000, Hearing Research.

[43]  R. Snyder,et al.  Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness , 1999, The Journal of comparative neurology.

[44]  P. M. Kelley,et al.  Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. , 1999, American journal of medical genetics.

[45]  Li Li,et al.  Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration? , 1999, Hearing Research.

[46]  J. Nadol,et al.  Dense innervation of Deiters' and Hensen's cells persists after chronic deefferentation of guinea pig cochleas , 1998, The Journal of comparative neurology.

[47]  Atsushi Kawano,et al.  Effects of Chronic Electrical Stimulation on Spiral Ganglion Neuron Survival and Size in Deafened Kittens , 1998, The Laryngoscope.

[48]  C. Petit,et al.  Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. , 1997, Human molecular genetics.

[49]  D. Kelsell,et al.  Connexin 26 mutations in hereditary non-syndromic sensorineural deafness , 1997, nature.

[50]  Y. Raphael,et al.  Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig , 1997, Hearing Research.

[51]  K. Rodgers,et al.  Expression of the major basement membrane-associated proteins during postnatal development in the murine cochlea , 1997, Hearing Research.

[52]  D. Cosgrove,et al.  Expression of basement membrane type IV collagen chains during postnatal development in the murine cochlea , 1996, Hearing Research.

[53]  Graeme M. Clark,et al.  Computer-Aided Three-Dimensional Reconstruction in Human Cochlear Maps: Measurement of the Lengths of Organ of Corti, Outer Wall, Inner Wall, and Rosenthal's Canal , 1996, The Annals of otology, rhinology, and laryngology.

[54]  D. Cosgrove,et al.  Immunohistochemical localization of basement membrane collagens and associated proteins in the murine cochlea , 1996, Hearing Research.

[55]  R. Glynn,et al.  Morphologic evidence for three cell types in the human spiral ganglion , 1996, Hearing Research.

[56]  Charles A. Miller,et al.  Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures , 1995, Hearing Research.

[57]  Stephen J. Rebscher,et al.  Consequences of chronic extracochlear electrical stimulation in neonatally deafened cats , 1995, Hearing Research.

[58]  G. M. Clark,et al.  Cochlear pathology following chronic electrical stimulation of the auditory nerve: II deafened kittens , 1994, Hearing Research.

[59]  J. Nadol,et al.  Supranuclear efferent synapses on outer hair cells and Deiters' cells in the human organ of Corti , 1994, Hearing Research.

[60]  M. Eybalin,et al.  Immunocytochemical detection of choline acetyltransferase in the human organ of Corti , 1994, Hearing Research.

[61]  M. Gleeson,et al.  Ultrastructural features of human Reissner's membrane. , 1993, Scanning microscopy.

[62]  H. Schuknecht,et al.  Cochlear Pathology in Presbycusis , 1993, The Annals of otology, rhinology, and laryngology.

[63]  N. Slepecky,et al.  Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil , 1992, Cell and Tissue Research.

[64]  N. Slepecky,et al.  Type II and type IX collagen form heterotypic fibers in the tectorial membrane of the inner ear. , 1992, Matrix.

[65]  M. Ulfendahl,et al.  Actin-binding and microtubule-associated proteins in the organ of Corti , 1992, Hearing Research.

[66]  Jochen Schacht,et al.  First appearance and development of motile properties in outer hair cells isolated from guinea-pig cochlea , 1991, Hearing Research.

[67]  S. Spicer,et al.  Differentiation of inner ear fibrocytes according to their ion transport related activity , 1991, Hearing Research.

[68]  R. Snyder,et al.  Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats , 1991, Hearing Research.

[69]  D. D. Greenwood,et al.  Critical bandwidth and consonance in relation to cochlear frequency-position coordinates , 1991, Hearing Research.

[70]  R. Altschuler,et al.  Protective Effect of Electrical Stimulation in the Deafened Guinea Pig Cochlea , 1991, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  J. Nadol Degeneration of cochlear neurons as seen in the spiral ganglion of man , 1990, Hearing Research.

[72]  C. Muren,et al.  Anatomic Variations of the Cochlea and Relations to other Temporal Bone Structures , 1990, Acta radiologica.

[73]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[74]  T. Hoshino Scanning electron microscopy of nerve fibers in human fetal cochlea. , 1990, Journal of electron microscopy technique.

[75]  J. Nadol Synaptic morphology of inner and outer hair cells of the human organ of Corti. , 1990, Journal of electron microscopy technique.

[76]  H. Spoendlin,et al.  Analysis of the human auditory nerve , 1989, Hearing Research.

[77]  H. Takahashi,et al.  Computer-Aided Three-Dimensional Reconstruction and Measurement of the round Window and its Membrane , 1989, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[78]  R. Hilsinger,et al.  Computer-Generated Three-Dimensional Reconstruction of the Cochlea , 1989, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[79]  O. Henson,et al.  Tension fibroblasts and the connective tissue matrix of the spiral ligament , 1988, Hearing Research.

[80]  I. Sando,et al.  Anatomy of the round window. A histopathological study with a graphic reconstruction method. , 1988, Acta oto-laryngologica.

[81]  H. Spoendlin,et al.  The spiral ganglion and the innervation of the human organ of Corti. , 1988, Acta oto-laryngologica.

[82]  Luboš Voldřich,et al.  Correlative study of sensory cell density and cochlear length in humans , 1987, Hearing Research.

[83]  R. Lousteau,et al.  Increased spiral ganglion cell survival in electrically stimulated, deafened guinea pig cochleae , 1987, The Laryngoscope.

[84]  G M Clark,et al.  Surgical anatomy of the round window with special reference to cochlear implantation , 1987, The Journal of Laryngology & Otology.

[85]  D W Kennedy,et al.  Multichannel intracochlear electrodes: Mechanism of insertion trauma , 1987, The Laryngoscope.

[86]  J. Niparko,et al.  Anatomy of the round Window Niche , 1986, The Annals of otology, rhinology, and laryngology.

[87]  H. Spoendlin,et al.  Anatomy of cochlear innervation. , 1985, American journal of otolaryngology.

[88]  R. Pujol,et al.  The very distal part of the basilar papilla in the chicken: A morphological approach , 1985, The Journal of comparative neurology.

[89]  D. Bagger-sjöbäck,et al.  Preservation of the Human Cochlea , 1985, The Annals of otology, rhinology, and laryngology.

[90]  T. Hoshino,et al.  Nerve Fibers in the Fetal Organ of Corti , 1985, The Annals of otology, rhinology, and laryngology.

[91]  A. Arnesen Fibre population of the vestibulocochlear anastomosis in humans. , 1984, Acta oto-laryngologica.

[92]  R. Kimura Fistulae in the Membranous Labyrinth , 1984, The Annals of otology, rhinology & laryngology. Supplement.

[93]  A. Wright,et al.  Dimensions of the cochlear stereocilia in man and the guinea pig , 1984, Hearing Research.

[94]  F. Linthicum,et al.  Histologic Evaluation of Temporal Bones with Cochlear Implants , 1983, The Annals of otology, rhinology, and laryngology.

[95]  J. Nadol Serial section reconstruction of the neural poles of hair cells in the human organ of corti. II. outer hair cells , 1983, The Laryngoscope.

[96]  J. Nadol Serial Section Reconstruction of the Neural Poles of Hair Cells in the Human Organ Of Corti. I. Inner Hair Cells , 1983, The Laryngoscope.

[97]  C. G. Wright,et al.  Inner ear histopathology in patients treated with Cis‐Platinum. , 1982, The Laryngoscope.

[98]  W. Arnold Pathogenetic reflections concerning Menière's disease. , 1982, Advances in oto-rhino-laryngology.

[99]  A. Wright Giant cilia in the human organ of Corti. , 1982, Clinical otolaryngology and allied sciences.

[100]  M S Marion,et al.  Anatomical measurements of the cochlear aqueduct, round window membrane, round window niche, and facial recess. , 1982, The Laryngoscope.

[101]  W. Arnold THE SPIRAL GANGLION OF THE NEWBORN BABY , 1982, The American journal of otology.

[102]  A. Wright Scanning electron microscopy of the normal human cochlea. , 1981, Clinical otolaryngology and allied sciences.

[103]  S. Fujimoto,et al.  Scanning and transmission electron microscope studies on the organ of Corti and stria vascularis in human fetal cochlear ducts. , 1981, Archivum histologicum Japonicum = Nihon soshikigaku kiroku.

[104]  M. Liberman,et al.  Efferent synapses in the inner hair cell area of the cat cochlea: An electron microscopic study of serial sections , 1980, Hearing Research.

[105]  Y. Igarashi Cochlea of the human fetus: a scanning electron microscope study. , 1980, Archivum histologicum Japonicum = Nihon soshikigaku kiroku.

[106]  M. Liberman Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections , 1980, Hearing Research.

[107]  R. Kimura,et al.  Nerve Fiber Synapses on Spiral Ganglion Cells in the Human Cochlea , 1979, The Annals of otology, rhinology & laryngology. Supplement.

[108]  Katsuhiko Tanaka,et al.  Organ of Corti in the Human Fetus , 1979, The Annals of otology, rhinology, and laryngology.

[109]  H. Spoendlin Sensory neural organization of the cochlea , 1979, The Journal of Laryngology & Otology.

[110]  G M Clark,et al.  The Surgery for multiple-electrode cochlear implantations , 1979, The Journal of Laryngology & Otology.

[111]  H. Spoendlin [Report of the conference for inner ear biology, Bordeaux 1977 (author's transl)]. , 1978, HNO.

[112]  J. Stahle,et al.  Human Cochlear Aqueduct and its Accessory Canals , 1977, The Annals of otology, rhinology & laryngology. Supplement.

[113]  D. Hilding,et al.  Pigmentation of the stria vascularis. The contribution of neural crest melanocytes. , 1977, Acta oto-laryngologica.

[114]  T. Hoshino Contact between the tectorial membrane and the cochlear sensory hairs in the human and the monkey , 1977, Archives of oto-rhino-laryngology.

[115]  C. G. Wright,et al.  Efferent nerve fibers associated with the outermost supporting cells of the organ of Corti in the guinea pig. , 1976, Acta oto-laryngologica.

[116]  G. Clark A surgical approach for a cochlear implant: An anatomical study , 1975, The Journal of Laryngology & Otology.

[117]  H. Rask-Andersen,et al.  The Vestibular Aqueduct and the Para-Vestibular Canal , 1974, Acta radiologica: diagnosis.

[118]  W. House,et al.  Long Term Results of Electrode Implantation and Electronic Stimulation of the Cochlea in Man , 1973, The Annals of otology, rhinology, and laryngology.

[119]  D. Lim Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. , 1972, Archives of otolaryngology.

[120]  R P Michelson,et al.  Electrical stimulation of the human cochlea. A preliminary report. , 1971, Archives of otolaryngology.

[121]  H. Ades,et al.  Scanning Electron Microscopy of the Organ of Corti , 1970, Science.

[122]  W. T. Peake,et al.  Experiments in Hearing , 1963 .

[123]  R. Gacek The efferent cochlear bundle in man. , 1961, Archives of otolaryngology.

[124]  L. M. Sellers The round window—A critical re‐evaluation , 1961, The Laryngoscope.

[125]  T. H. Bast XXXII Development of the Otic Capsule , 1942 .

[126]  F. Linthicum,et al.  Ganglion cell and 'dendrite' populations in electric acoustic stimulation ears. , 2010, Advances in oto-rhino-laryngology.

[127]  J. Nadol,et al.  Histopathology of the inner ear relevant to cochlear implantation. , 2006, Advances in oto-rhino-laryngology.

[128]  A. Wright Scanning electron microscopy of the human cochlea — Postmortem autolysis artefacts , 2004, Archives of oto-rhino-laryngology.

[129]  R. Illing,et al.  Human round window membrane receptor , 2004 .

[130]  I. Kawabata,et al.  Loss of stereocilia in the human organ of Corti , 2004, Archives of oto-rhino-laryngology.

[131]  A. Wright Scanning electron microscopy of the human cochlea — The organ of Corti , 2004, Archives of oto-rhino-laryngology.

[132]  A. Wright Scanning electron microscopy of the human cochlea — the stria vascularis , 2004, Archives of oto-rhino-laryngology.

[133]  R. Pujol,et al.  Development of the auditory hair cell surface in human fetuses , 2004, Anatomy and Embryology.

[134]  A. Flock,et al.  Mechanisms of movement in outer hair cells and a possible structural basis , 2004, Archives of oto-rhino-laryngology.

[135]  T. Hoshino Imprints of the inner sensory cell hairs on the human tectorial membrane , 2004, Archives of oto-rhino-laryngology.

[136]  M. Eybalin,et al.  Neurotransmission in the human labyrinth. , 2002, Advances in oto-rhino-laryngology.

[137]  A. Kataura,et al.  Topographical relationships among the facial nerve, chorda tympani nerve and round window with special reference to the approach route for cochlear implant surgery , 2000, Clinical anatomy.

[138]  R. Illing,et al.  On a novel type of neuron with proposed mechanoreceptor function in the human round window membrane--an immunohistochemical study. , 1999, Revue de laryngologie - otologie - rhinologie.

[139]  G. Richardson,et al.  Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment , 1998, Nature Genetics.

[140]  F. E. Offeciers,et al.  Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. , 1998, Nature genetics.

[141]  H. Rask-Andersen,et al.  Neural interaction in the human spiral ganglion: a TEM study. , 1997, Acta oto-laryngologica.

[142]  H. Rask-Andersen,et al.  Nerve fibre interaction with large ganglion cells in the human spiral ganglion. A TEM study. , 1997, Auris, nasus, larynx.

[143]  M. Gleeson,et al.  Morphological features of human Reissner's membrane. , 1993, Acta oto-laryngologica.

[144]  I. Thalmann,et al.  Collagen of accessory structures of organ of Corti. , 1993, Connective tissue research.

[145]  N. Slepecky,et al.  Localization of type II, IX and V collagen in the inner ear. , 1992, Acta oto-laryngologica.

[146]  J. Aran,et al.  Axo-somatic contacts in the postnatal developing white rat spiral ganglion. , 1992, Acta oto-laryngologica.

[147]  M. Osborne,et al.  The importance of early fixation in preservation of human cochlear and vestibular sensory hair bundles. , 1990, Acta oto-laryngologica.

[148]  G. Reiss,et al.  Scanning electron microscopy in a case of infantile inborn deafness. , 1990, Acta oto-laryngologica. Supplementum.

[149]  G. Reiss Investigation of intracellular organelles in the human organ of Corti using backscattered electrons (BSE). , 1990, Acta oto-laryngologica. Supplementum.

[150]  H. Spoendlin,et al.  Quantitative evaluation of the human cochlear nerve. , 1990, Acta oto-laryngologica. Supplementum.

[151]  G. Hillerdal,et al.  Preservation of the human cochlea with two different fixatives. , 1990, Acta oto-laryngologica. Supplementum.

[152]  M. Osborne,et al.  Post-mortem changes in hair bundles of the guinea pig and human cochlea studied by high-resolution scanning microscopy. , 1989, Acta oto-laryngologica.

[153]  K. Wadin Radioanatomy of the high jugular fossa and the labyrinthine portion of the facial canal. A radioanatomic and clinical investigation. , 1988, Acta radiologica. Supplementum.

[154]  A. Wright,et al.  Hair cell distributions in the normal human cochlea. , 1987, Acta oto-laryngologica. Supplementum.

[155]  W. Arnold Myelination of the human spiral ganglion. , 1987, Acta oto-laryngologica. Supplementum.

[156]  W. Arnold,et al.  Possibilities of immunohistochemical investigation on human temporal bone. , 1987, Acta oto-laryngologica. Supplementum.

[157]  R. Pujol,et al.  Surface aspects of the developing human organ of Corti. , 1987, Acta oto-laryngologica. Supplementum.

[158]  D. Bagger-sjöbäck,et al.  Selected pathological findings in the human cochlea. , 1987, Acta oto-laryngologica. Supplementum.

[159]  R. Kimura,et al.  Synapses and ephapses in the spiral ganglion. , 1987, Acta oto-laryngologica. Supplementum.

[160]  R. Pujol,et al.  [Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses]. , 1985, Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris.

[161]  M. Gleeson A scanning electron microscopy study of post mortem autolytic changes in the human and rat cochleas. , 1985, Acta oto-laryngologica.

[162]  K. Burian,et al.  Hören über ein Cochlea-Implantat , 1981, Archives of oto-rhino-laryngology.

[163]  R. Kimura,et al.  Ultrastructural study of the human spiral ganglion. , 1980, Acta oto-laryngologica.

[164]  W. Arnold,et al.  [Anatomical observations in the spiral ganglion of human newborns (author's transl)]. , 1980, Archives of oto-rhino-laryngology.

[165]  Hunter-Duvar Im Hearing and hair cells. , 1975 .

[166]  I. Hunter‐Duvar Hearing and hair cells. , 1975, Canadian journal of otolaryngology.

[167]  H. Spoendlin,et al.  Primary structural changes in the organ of Corti after acoustic overstimulation. , 1971, Acta oto-laryngologica.

[168]  H. Schuknecht,et al.  The Ultrastructure of the Human Stria Vascularis. PART I , 1970 .

[169]  H. Schuknecht,et al.  The ultrastructure of the human stria vascularis. I. , 1970, Acta oto-laryngologica.

[170]  W. C. Lane,et al.  Cochlear sensory epithelium. A scanning electron microscopic observation. , 1969, The Annals of otology, rhinology, and laryngology.

[171]  G. Bredberg,et al.  Cellular pattern and nerve supply of the human organ of Corti. , 1968, Acta oto-laryngologica.

[172]  B. Anson,et al.  Anatomical Observations on the Round Window BY ANTONIO SCARPA , 1962 .

[173]  P. Coleman,et al.  Experiments in hearing , 1961 .

[174]  Mary Hardy,et al.  The length of the organ of Corti in man , 1938 .

[175]  C. S. Hallpike,et al.  Electrical Stimulation of the Human Cochlea , 1937, Nature.