Mutation in the ace‐1 gene of the tomato leaf miner (Tuta absoluta) associated with organophosphates resistance

The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a major invasive pest that has spread throughout many countries in the Mediterranean basin and parts of Asia over the last decade. The control of T. absoluta has relied heavily on the use of chemical insecticides, a strategy that has led to the evolution of resistance. In this study, biological and molecular methods were used to determine the susceptibility of five strains of T. absoluta to the organophosphate chlorpyrifos and to investigate the molecular mechanisms underlying resistance to this class of insecticides. High levels of resistance to chlorpyrifos were observed in all five strains tested. Cloning and sequencing of the gene encoding the organophosphate target site, ace‐1, of T. absoluta revealed the presence of an alanine to serine substitution at a position that has been previously linked with organophosphate resistance across a range of different insect and mite species. The presence of this mutation at high frequency in T. absoluta populations originating from various countries further supports the suggestion that the rapid expansion of this species is, in part, mediated by the resistance of this pest to chemical insecticides.

[1]  D. Gerling,et al.  Control of the Tomato Leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), in Open-Field Tomatoes by Indigenous Natural Enemies Occurring in Israel , 2015, Journal of Economic Entomology.

[2]  E. Virla,et al.  Potential of Biological Control Agents Against Tuta absoluta (Lepidoptera: Gelechiidae): Current Knowledge in Argentina , 2015 .

[3]  N. Desneux,et al.  Potential Toxicity of &agr;-Cypermethrin-Treated Nets on Tuta absoluta (Lepidoptera: Gelechiidae) , 2015, Journal of economic entomology.

[4]  N. Desneux,et al.  The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile , 2015, Scientific Reports.

[5]  R. Nauen,et al.  First report of Tuta absoluta resistance to diamide insecticides , 2015, Journal of Pest Science.

[6]  M. R. Campos,et al.  Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) , 2014, Journal of Pest Science.

[7]  Cristian Escudero,et al.  Insecticide effect of cyantraniliprole on tomato moth Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) larvae in field trials , 2014 .

[8]  G. Wang,et al.  Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) , 2014, PloS one.

[9]  E. Roditakis,et al.  Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. , 2013, Pest management science.

[10]  M. Williamson,et al.  Chlorpyrifos resistance is associated with mutation and amplification of the acetylcholinesterase-1 gene in the tomato red spider mite, Tetranychus evansi. , 2012 .

[11]  M. Williamson,et al.  Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). , 2012, Insect biochemistry and molecular biology.

[12]  A. Cocco,et al.  Recruitment of native parasitoids by the exotic pest Tuta absoluta in Southern Italy , 2012 .

[13]  A. Roques Biological invasion. , 2012, Integrative zoology.

[14]  F. Sanna,et al.  INSECTICIDE EFFICACY TRIALS FOR MANAGEMENT OF THE TOMATO BORER TUTA ABSOLUTA (MEYRICK) (LEPIDOPTERA: GELECHIIDAE), A NEW TOMATO PEST IN SARDINIA (ITALY) , 2011 .

[15]  Nicolas Desneux,et al.  The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production , 2011, Journal of Pest Science.

[16]  P. Bielza,et al.  Genetic study of Mediterranean and South American populations of tomato leafminer Tuta absoluta (Povolny, 1994) (Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. , 2011, Pest management science.

[17]  M. Picanço,et al.  Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. , 2011, Pest management science.

[18]  R. Nauen,et al.  Overview of the status and global strategy for neonicotinoids. , 2011, Journal of agricultural and food chemistry.

[19]  A. Chatonnet,et al.  Insecticide resistance through mutations in cholinesterases or carboxylesterases: data mining in the ESTHER database , 2010 .

[20]  Christine Poncet,et al.  Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control , 2010, Journal of Pest Science.

[21]  L. Tirry,et al.  Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. , 2010, Pest management science.

[22]  M. Weill,et al.  Genes Conferring Resistance to Organophosphorus Insecticides in Culex pipiens (Diptera: Culicidae) From Tunisia , 2009, Journal of medical entomology.

[23]  Zhaojun Han,et al.  Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). , 2009, Biochemical and biophysical research communications.

[24]  F. Chandre,et al.  Comparison of Anopheles gambiae and Culex pipiens acetycholinesterase 1 biochemical properties. , 2008, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[25]  C. Qiao,et al.  Different Amino-Acid Substitutions Confer Insecticide Resistance Through Acetylcholinesterase 1 Insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera: Culicidae) from China , 2007, Journal of medical entomology.

[26]  Y. Koh,et al.  Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). , 2007, Biochemical and biophysical research communications.

[27]  B. Sauphanor,et al.  Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). , 2006, Insect biochemistry and molecular biology.

[28]  Wen-Jer Wu,et al.  Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. , 2006, Insect biochemistry and molecular biology.

[29]  D. Fournier Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. , 2005, Chemico-biological interactions.

[30]  Ju Il Kim,et al.  Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella , 2005 .

[31]  R. Alzogaray,et al.  Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) , 2005 .

[32]  M. Williamson,et al.  Identification of mutations conferring insecticide‐insensitive AChE in the cotton‐melon aphid, Aphis gossypii Glover , 2004, Insect molecular biology.

[33]  T. Tomita,et al.  Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae) , 2004, Insect molecular biology.

[34]  Fei Li,et al.  Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. , 2004, Insect biochemistry and molecular biology.

[35]  C. Malcolm,et al.  The unique mutation in ace‐1 giving high insecticide resistance is easily detectable in mosquito vectors , 2004, Insect molecular biology.

[36]  A. Devonshire,et al.  Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) , 2003, Insect molecular biology.

[37]  T. Nabeshima,et al.  An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. , 2003, Biochemical and biophysical research communications.

[38]  J Andrew McCammon,et al.  Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. , 2002, Journal of the American Chemical Society.

[39]  J. Araya,et al.  Tomato moth, Tuta absoluta (Meyrick) response to insecticides in Arica, Chile , 2001 .

[40]  R. Guedes,et al.  Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) , 2001 .

[41]  D. Fournier,et al.  A High Number of Mutations in Insect Acetylcholinesterase May Provide Insecticide Resistance , 2000 .

[42]  M. Picanço,et al.  Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae) , 2000 .

[43]  R. Feyereisen,et al.  Molecular biology of insecticide resistance. , 1995, Toxicology letters.

[44]  A. Mutero,et al.  Modification of acetylcholinesterase as a mechanism of resistance to insecticides. , 1994 .

[45]  A. Gnatt,et al.  Excavations into the active-site gorge of cholinesterases. , 1992, Trends in biochemical sciences.

[46]  H. Preisler,et al.  Pesticide Bioassays With Arthropods , 1991 .

[47]  J. Moore Control of tomato leafminer (Scrobipalpula absoluta) in Bolivia. , 1983 .

[48]  T. Steitz,et al.  Crystallographic and NMR studies of the serine proteases. , 1982, Annual review of biophysics and bioengineering.

[49]  K. Courtney,et al.  A new and rapid colorimetric determination of acetylcholinesterase activity. , 1961, Biochemical pharmacology.

[50]  W N ALDRIDGE,et al.  Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. , 1950, The Biochemical journal.