Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study.

PURPOSE To assess whether alterations in tumor blood volume (BV) and blood flow (BF) during the early course of chemo-radiotherapy (chemo-RT) for head-and-neck cancer (HNC) predict treatment outcome. METHODS AND MATERIALS Fourteen patients receiving concomitant chemo-RT for nonresectable, locally advanced HNC underwent dynamic contrast-enhanced (DCE) MRI scans before therapy and 2 weeks after initiation of chemo-RT. The BV and BF were quantified from DCE MRI. Preradiotherapy BV and BF, as well as their changes during RT, were evaluated separately in the primary gross tumor volume (GTV) and nodal GTV for association with outcomes. RESULTS At a median follow-up of 10 months (range, 5-27 months), 9 patients had local-regional controlled disease. One patient had regional failure, 3 had local failures, and 1 had local-regional failure. Reduction in tumor volume after 2 weeks of chemo-RT did not predict for local control. In contrast, the BV in the primary GTV after 2 weeks of chemo-RT was increased significantly in the local control patients compared with the local failure patients (p < 0.03). CONCLUSIONS Our data suggest that an increase in available primary tumor blood for oxygen extraction during the early course of RT is associated with local control, thus yielding a predictor with potential to modify treatment. These findings require validation in larger studies.

[1]  Tove Grönroos,et al.  Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. , 2004, International Journal of Radiation Oncology, Biology, Physics.

[2]  J. Overgaard,et al.  A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[3]  A L Baert,et al.  Non-invasive tumour perfusion measurement by dynamic CT: preliminary results. , 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  S. Mukherji,et al.  Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? , 2007, AJNR. American journal of neuroradiology.

[5]  M. Dewhirst,et al.  Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  C. Tsien,et al.  EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[8]  Daniela Thorwarth,et al.  Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer , 2005, BMC Cancer.

[9]  Philippe Lambin,et al.  Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. , 2003, International journal of radiation oncology, biology, physics.

[10]  M Molls,et al.  Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. , 1999, International journal of radiation oncology, biology, physics.

[11]  Elisabeth Kjellén,et al.  FDG PET studies during treatment: Prediction of therapy outcome in head and neck squamous cell carcinoma , 2002, Head & neck.

[12]  S. Mukherji,et al.  Correlation between initial and early follow-up CT perfusion parameters with endoscopic tumor response in patients with advanced squamous cell carcinomas of the oropharynx treated with organ-preservation therapy. , 2006, AJNR. American journal of neuroradiology.

[13]  H A O'Brien,et al.  Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  C. Tsien,et al.  Chemoselection as a strategy for organ preservation in advanced oropharynx cancer: response and survival positively associated with HPV16 copy number. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  Yue Cao,et al.  Clinical investigation survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT , 2006 .