Insights into the Mechanism and Kinetics of Dissolution of Aluminoborosilicate Glasses in Acidic Media: Impact of High Ionic Field Strength Cations

[1]  Jincheng Du,et al.  Elucidating the Atomic Structures of the Gel Layer Formed during Aluminoborosilicate Glass Dissolution: An Integrated Experimental and Simulation Study , 2022, The Journal of Physical Chemistry C.

[2]  S. Gin,et al.  A comparative study of the dissolution mechanisms of amorphous and crystalline feldspars at acidic pH conditions , 2022, npj Materials Degradation.

[3]  J. Mauro,et al.  Piezoelectric glass‐ceramics: Crystal chemistry, orientation mechanisms, and emerging applications , 2021 .

[4]  A. Tyryshkin,et al.  Insight into the Partitioning and Clustering Mechanism of Rare-Earth Cations in Alkali Aluminoborosilicate Glasses , 2021, Chemistry of Materials.

[5]  Sung Keun Lee,et al.  Effect of composition on structural evolution and NMR parameters of quadrupolar nuclides in sodium borate and aluminoborosilicate glasses: a view from high-resolution 11B, 27Al, and 17O solid-state NMR , 2021 .

[6]  R. Youngman,et al.  Multiscale Investigation of the Mechanisms Controlling the Corrosion of Borosilicate Glasses in Hyper-Alkaline Media , 2020, The Journal of Physical Chemistry C.

[7]  D. Neuville,et al.  Effect of Ti4+ on the structure of nepheline (NaAlSiO4) glass , 2020, Geochimica et Cosmochimica Acta.

[8]  S. Kerisit,et al.  Insights into the mechanisms controlling the residual corrosion rate of borosilicate glasses , 2020, npj Materials Degradation.

[9]  W. Zouari,et al.  Solubility of monoclinic and yttrium stabilized cubic ZrO2: Solution and surface thermodynamics guiding ultra-trace analytics in aqueous phase , 2020 .

[10]  M. Smedskjaer,et al.  Mixed Alkali Effect in Silicate Glass Structure: Viewpoint of 29Si Nuclear Magnetic Resonance and Statistical Mechanics. , 2020, The journal of physical chemistry. B.

[11]  J. Mauro,et al.  Ultra-thin glass as a substrate for flexible photonics , 2020 .

[12]  Kelleen K. Hughes,et al.  Data-driven predictive models for chemical durability of oxide glass under different chemical conditions , 2020, npj Materials Degradation.

[13]  J. Osán,et al.  Structural investigation of borosilicate glasses containing lanthanide ions , 2020, Scientific Reports.

[14]  V. Eremyashev,et al.  The Effects of Alkaline Earth Metals on the Structure of Sodium Borosilicate Glasses: 11B and 29Si NMR Study , 2020 .

[15]  G. Cody,et al.  29Si solid state NMR and Ti K-edge XAFS pre-edge spectroscopy reveal complex behavior of Ti in silicate melts , 2020, Progress in Earth and Planetary Science.

[16]  Aditya Kumar,et al.  Machine learning as a tool to design glasses with controlled dissolution for healthcare applications. , 2020, Acta biomaterialia.

[17]  S. Kerisit,et al.  A General Mechanism for Gel Layer Formation on Borosilicate Glass under Aqueous Corrosion , 2020, The Journal of Physical Chemistry C.

[18]  Yangshan Sun,et al.  A novel type of borosilicate glass with excellent chemical stability and high ultraviolet transmission , 2020 .

[19]  R. Youngman,et al.  An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments. , 2020, Physical chemistry chemical physics : PCCP.

[20]  S. Gin,et al.  Effect of pH on the stability of passivating gel layers formed on International Simple Glass , 2019, Journal of Nuclear Materials.

[21]  Yevhenii M. Morozov,et al.  A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface , 2019, Nanoscale Research Letters.

[22]  T. Geisler,et al.  Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy , 2019, Nature Materials.

[23]  Liping Huang,et al.  Composition – structure – property relationships in alkali aluminosilicate glasses: A combined experimental – computational approach towards designing functional glasses , 2019, Journal of Non-Crystalline Solids.

[24]  S. Gin,et al.  Quantitative Structure-Property Relationship (QSPR) Analysis of ZrO2-Containing Soda-Lime Borosilicate Glasses. , 2019, The journal of physical chemistry. B.

[25]  S. Gin,et al.  Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: Evidence of a double-layered gel , 2019, Journal of Non-Crystalline Solids.

[26]  N. Hyatt,et al.  Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics , 2018, Journal of Nuclear Materials.

[27]  M. Kilburn,et al.  Towards a unifying mechanistic model for silicate glass corrosion , 2018, npj Materials Degradation.

[28]  M.M.R.A. Lima,et al.  Thermal characteristics and crystallization behavior of zinc borosilicate glasses containing Nb2O5 , 2018, Journal of Non-Crystalline Solids.

[29]  S. Kerisit,et al.  Dynamics of self-reorganization explains passivation of silicate glasses , 2018, Nature Communications.

[30]  D. Leonard,et al.  Toward an understanding of surface layer formation, growth, and transformation at the glass–fluid interface , 2018 .

[31]  M. Amin,et al.  Corrosion Behavior Mechanism of Borosilicate Glasses Towards Different Leaching Solutions Evaluated by the Grain Method and FTIR Spectral Analysis Before and After Gamma Irradiation , 2018, Silicon.

[32]  A. Kashani,et al.  Examination of alkali-activated material nanostructure during thermal treatment , 2018, Journal of Materials Science.

[33]  J. Mauro,et al.  Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses. , 2018, The journal of physical chemistry. B.

[34]  M. Bauchy,et al.  Predicting the dissolution kinetics of silicate glasses using machine learning , 2017, 1712.06018.

[35]  J. Rodríguez,et al.  Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111) , 2017 .

[36]  Ke-Qin Zhang,et al.  Facile and Effective Coloration of Dye-Inert Carbon Fiber Fabrics with Tunable Colors and Excellent Laundering Durability. , 2017, ACS nano.

[37]  L. Wondraczek,et al.  The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties , 2017 .

[38]  Kongfa Chen,et al.  Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells , 2017, Scientific Reports.

[39]  Jincheng Du,et al.  Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses , 2016 .

[40]  P. Frugier,et al.  The controversial role of inter-diffusion in glass alteration , 2016 .

[41]  Seong H. Kim,et al.  Elemental areal density calculation and oxygen speciation for flat glass surfaces using x-ray photoelectron spectroscopy , 2016 .

[42]  P. Frugier,et al.  Glass dissolution rate measurement and calculation revisited , 2016 .

[43]  K. Sanders,et al.  Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses. , 2016, Journal of magnetic resonance.

[44]  John C. Mauro,et al.  Accelerating the Design of Functional Glasses through Modeling: Plenary Talk , 2016 .

[45]  Morten Mattrup Smedskjær,et al.  Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens , 2016 .

[46]  S. Kerisit,et al.  Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability , 2016 .

[47]  Chul-Tae Lee Non-HF Type Etching Solution for Slimming of Flat Panel Display Glass , 2016 .

[48]  N. Hyatt,et al.  Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes , 2015 .

[49]  M. Kilburn,et al.  The mechanism of borosilicate glass corrosion revisited , 2015 .

[50]  A. Seyeux,et al.  Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. , 2015, Nature materials.

[51]  P. Frugier,et al.  Origin and consequences of silicate glass passivation by surface layers , 2015, Nature Communications.

[52]  J. Stebbins,et al.  Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: the roles of fictive temperature and boron content , 2014 .

[53]  John C. Mauro,et al.  Glass Science in the United States: Current Status and Future Directions , 2014 .

[54]  S. Gin,et al.  Chemical Durability of Lanthanum‐Enriched Borosilicate Glass , 2013 .

[55]  John D. Vienna,et al.  Current Understanding and Remaining Challenges in Modeling Long‐Term Degradation of Borosilicate Nuclear Waste Glasses , 2013 .

[56]  S. Gin,et al.  Antagonist effects of calcium on borosilicate glass alteration , 2013 .

[57]  S. Gin,et al.  Influence of lanthanum on borosilicate glass structure: A multinuclear MAS and MQMAS NMR investigation , 2013 .

[58]  O. Parkash,et al.  Controlled crystallization of (Pb, Sr)TiO3 borosilicate glass ceramics doped with Nb2O5 , 2013, Glass Physics and Chemistry.

[59]  S. Gin,et al.  Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides , 2012 .

[60]  Morten Mattrup Smedskjær,et al.  Composition–structure–property relationships in boroaluminosilicate glasses , 2012 .

[61]  Dmitri O. Klenov,et al.  Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy , 2012 .

[62]  John C. Mauro,et al.  Sodium diffusion in boroaluminosilicate glasses , 2011 .

[63]  S. Gin,et al.  Why Do Certain Glasses with a High Dissolution Rate Undergo a Low Degree of Corrosion , 2011 .

[64]  Georges Calas,et al.  First investigations of the influence of IVB elements (Ti, Zr, and Hf) on the chemical durability of soda-lime borosilicate glasses , 2010 .

[65]  J. Stewart,et al.  The kinetics of corrosion of e-glass fibres in sulphuric acid , 2010 .

[66]  D. Brauer,et al.  Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications , 2010 .

[67]  G. Calas,et al.  Structural evolution of glass surface during alteration: Application to nuclear waste glasses , 2010 .

[68]  T. Charpentier,et al.  Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium , 2010 .

[69]  Yoshio Waseda,et al.  Thermodynamic Properties of Niobium Oxides , 2010 .

[70]  Arne Janssen,et al.  Aqueous corrosion of borosilicate glass under acidic conditions: A new corrosion mechanism , 2010 .

[71]  D. A. Palmer,et al.  Solubility of B-Nb2O5 and the Hydrolysis of Niobium(V) in Aqueous Solution as a Function of Temperature and Ionic Strength , 2010 .

[72]  Ivan A. Cornejo,et al.  Glass Substrates for Liquid Crystal Displays , 2010 .

[73]  W. Malfait,et al.  The nature of hydroxyl groups in aluminosilicate glasses: Quantifying Si-OH and Al-OH abundances along the SiO2-NaAlSiO4 join by 1H, 27Al-1H and 29Si-1H NMR spectroscopy , 2010 .

[74]  J. Stebbins,et al.  Effects of cation field strength on the structure of aluminoborosilicate glasses: High-resolution 11B, 27Al and 23Na MAS NMR , 2009 .

[75]  M. Graça,et al.  NaNbO3 crystals dispersed in a B2O3 glass matrix – Structural characteristics versus electrical and dielectrical properties , 2009 .

[76]  W. Ni,et al.  The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system , 2008 .

[77]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[78]  P. Ricciardi,et al.  Glass corrosion mechanisms: A multiscale analysis , 2008 .

[79]  T. Charpentier,et al.  Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses : Towards a quantitative approach by 17O MQMAS NMR , 2008 .

[80]  D. Ehrt,et al.  X-ray absorption near edge structure analysis of valence state and coordination geometry of Ti ions in borosilicate glasses , 2008 .

[81]  V. M. Nartsev,et al.  Effect of the glass composition on corrosion of zirconium-containing refractories in a glass-melting furnace (a review) , 2007 .

[82]  J. Ferreira,et al.  Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass , 2007 .

[83]  L. Wondraczek,et al.  Vibrational spectroscopy study of niobium germanosilicate glasses , 2007 .

[84]  J. Delaye,et al.  Evidence for symmetric cationic sites in zirconium-bearing oxide glasses , 2006 .

[85]  T. Charpentier,et al.  Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation , 2006 .

[86]  Jochen Schmidt,et al.  Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. , 2006, The journal of physical chemistry. B.

[87]  B. Champagnon,et al.  The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy , 2005 .

[88]  Graham C. Smith Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS , 2005 .

[89]  D. Ghaleb,et al.  Evidence for 6‐Coordinated Zirconium in Inactive Nuclear Waste Glasses , 2004 .

[90]  John D. Minelly,et al.  La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers , 2004 .

[91]  S. Gíslason,et al.  The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C , 2004 .

[92]  S. Gíslason,et al.  The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C , 2004 .

[93]  M. Hupa,et al.  FTIR and XPS studies of bioactive silica based glasses , 2003 .

[94]  S. Gíslason,et al.  Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature , 2003 .

[95]  Liyu Li,et al.  Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium , 2003 .

[96]  L. Du,et al.  Site Preference and Si/B Mixing in Mixed-Alkali Borosilicate Glasses: A High-Resolution 11B and 17O NMR Study , 2003 .

[97]  L. Du,et al.  Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses: A High-Resolution 11B and 17O NMR Study , 2003 .

[98]  J. Stebbins,et al.  Nature of cation mixing and ordering in Na-Ca silicate glasses and melts , 2003 .

[99]  M. Azooz,et al.  Characterization of some glasses in the system SiO2, Na2O·RO by infrared spectroscopy , 2003 .

[100]  Ong Kian Soo,et al.  Ultrathin glass for flexible OLED application , 2002 .

[101]  M. Fleet,et al.  A Ti L-edge X-ray absorption study of Ti-silicate glasses , 2002 .

[102]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[103]  C. Musgrave,et al.  Topological Disorder and Reactivity of Borosilicate Glasses: Quantum Chemical Calculations and 17O and 11B NMR Study , 2001 .

[104]  D. Neuville,et al.  A high temperature neutron diffraction study of a titanosilicate glass , 2001 .

[105]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[106]  Syuji Matsumoto,et al.  X-ray photoelectron spectroscopy of sodium borosilicate glasses , 2001 .

[107]  Liyu Li,et al.  Gadolinium solubility in peralkaline borosilicate glasses , 2001 .

[108]  C. Pantano,et al.  Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution , 2001 .

[109]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[110]  C. Pantano,et al.  Dissolution of albite glass and crystal , 2000 .

[111]  C. Grey,et al.  Proton Environments in Hydrous Aluminosilicate Glasses: A 1H MAS, 1H/27Al, and 1H/23Na TRAPDOR NMR Study , 1999 .

[112]  A. Efimov Vibrational spectra, related properties, and structure of inorganic glasses , 1999 .

[113]  J. Stebbins,et al.  The Structural Role of Lanthanum and Yttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMR Study , 1998 .

[114]  S. Sen,et al.  Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution 11B, 29Si and 27Al NMR studies , 1998 .

[115]  C. Pantano,et al.  Effects of glass structure on the corrosion behavior of sodium-aluminosilicate glasses , 1997 .

[116]  B. Bunker,et al.  Solid-State 29Si MAS NMR Study of Titanosilicates , 1997 .

[117]  C. Lampert,et al.  Preparation and properties of spin-coated Nb2O5 films by the sol-gel process for electrochromic applications , 1996 .

[118]  A. Sebald,et al.  One- and two-dimensional 1H magic-angle spinning experiments on hydrous silicate glasses. , 1995, Solid state nuclear magnetic resonance.

[119]  M. Fleet,et al.  The structure of Ti silicate glasses by micro-Raman spectroscopy , 1995 .

[120]  Steve W. Martin,et al.  29Si MAS‐NMR Study of the Short‐Range Order in Potassium Borosilicate Glasses , 1995 .

[121]  B. C. Bunker,et al.  Molecular mechanisms for corrosion of silica and silicate glasses , 1994 .

[122]  V. Daux,et al.  Dissolution rate of a basalt glass in silica-rich solutions: Implications for long-term alteration , 1994 .

[123]  W. Müller-Warmuth,et al.  Characterization and structural developments of gel-derived borosilicate glasses: a multinuclear MAS-NMR study , 1994 .

[124]  O. Ivanova,et al.  Altered layer as sensitive initial chemical state indicator , 1994 .

[125]  J. Fierro,et al.  Bulk and Surface Properties of Copper-Containing Oxides of the General Formula LaZr1-xCuxO3 , 1994 .

[126]  G. D. Mea,et al.  The compared aqueous corrosion of four simple borosilicate glasses: Influence of Al, Ca and Fe on the formation and nature of secondary phases , 1992 .

[127]  K. Hirao,et al.  Elastic Properties and Molar Volume of Rare‐Earth Aluminosilicate Glasses , 1992 .

[128]  Debasis Majumdar,et al.  X‐ray photoelectron spectroscopic studies on yttria, zirconia, and yttria‐stabilized zirconia , 1991 .

[129]  V. Dimitrov,et al.  Structure and optical properties of niobium silicate glasses , 1991 .

[130]  F. Taulelle,et al.  A quantitative study of 27Al MAS NMR in crystalline YAG , 1990 .

[131]  L. Bulhões,et al.  The Electrochromic Process at Nb2 O 5 Electrodes Prepared by Thermal Oxidation of Niobium , 1990 .

[132]  A. Herczog Phase Distribution and Transparency in Glass‐Ceramics Based on a Study of the Sodium Niobate–Silica System , 1990 .

[133]  C. Morant,et al.  An XPS study of the interaction of oxygen with zirconium , 1989 .

[134]  S. Kohn,et al.  Proton environments and hydrogen-bonding in hydrous silicate glasses from proton NMR , 1989, Nature.

[135]  H. Lechert G. Engelhardt und D. Michel: High Resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1987. 485 Seiten, Preis: $ 55.–. , 1988 .

[136]  S. Sakka,et al.  Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy , 1988 .

[137]  David R. Tallant,et al.  The structure of leached sodium borosilicate glass , 1988 .

[138]  P. J. Bray,et al.  The effect of molecular structure on borosilicate glass leaching , 1986 .

[139]  Nobuo Araki,et al.  The corrosion of zircon and zirconia refractories by molten glasses , 1986 .

[140]  G. Spierings The influence of Nb2O5 on the properties of sodium borosilicate glass , 1982 .

[141]  B. Smets,et al.  The structure of germanosilicate glasses, studied by X-ray photoelectron spectroscopy , 1981 .

[142]  J. D. Rimstidt,et al.  The kinetics of silica-water reactions , 1980 .

[143]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[144]  R. H. Doremus,et al.  INTERDIFFUSION OF HYDROGEN AND ALKALI IONS IN A GLASS SURFACE , 1975 .

[145]  Martin E. Nordberg,et al.  Solubility of Silica in Nitric Acid Solutions , 1958 .

[146]  M. Lancry,et al.  Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation , 2017 .

[147]  S. Gíslason,et al.  Experimental determination of rhyolitic glass dissolution rates at 40–200 °C and 2 < pH < 10.1 , 2013 .

[148]  A. Takács,et al.  XPS study on silica–bismuthate glasses and glass ceramics , 2007 .

[149]  Liyu Li,et al.  Partitioning of gadolinium and its induced phase separation in sodium-aluminoborosilicate glasses , 2004 .

[150]  Susan L. Brantley,et al.  NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal , 2003 .

[151]  Maciej Kumosa,et al.  Corrosion of E-glass fibers in acidic environments , 1997 .

[152]  Chung-Cherng Lin,et al.  Structure and dissolution of CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2 glass (II) , 1997 .

[153]  J. Kragten,et al.  Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique , 1994 .

[154]  E. Adem,et al.  An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference , 1992 .

[155]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[156]  D. K. Smith,et al.  Dissolution Kinetics of a Simple Analogue Nuclear Waste Glass as a Function of Ph, Time and Temperature , 1989 .

[157]  F. Garbassi,et al.  XPS study of tellurium—niobium and tellurium—tantalum oxide systems , 1981 .

[158]  C. Rao,et al.  XPES studies of oxides of second- and third-row transition metals including rare earths , 1980 .

[159]  SusnarA. GnosB Structural Dependence of Quadrupole Coupling Constant e ' qQ / h for " Al and Ciystal Field Parameter D for Fe ' . in Aluminosilicates , 2022 .