A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model
暂无分享,去创建一个
Gabriel N. Gatica | Eligio Colmenares | Ricardo Oyarzúa | G. Gatica | Ricardo Oyarzúa | Eligio Colmenares
[1] A. Alonso. Error estimators for a mixed method , 1996 .
[2] Gabriel N. Gatica,et al. Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.
[3] Gabriel N. Gatica,et al. An augmented fully-mixed finite element method for the stationary Boussinesq problem , 2017 .
[4] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[5] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .
[6] Serge Nicaise,et al. A refined mixed finite element method for the boussinesq equations in polygonal domains , 2001 .
[7] J. Tinsley Oden,et al. A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .
[8] G. Gatica,et al. Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem , 2016 .
[9] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[10] Gabriel N. Gatica,et al. Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .
[11] M. Alvarez,et al. A posteriori error analysis for a viscous flow-transport problem , 2016 .
[12] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity , 2016, Comput. Math. Appl..
[13] Stefano Berrone,et al. Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .
[14] Serge Nicaise,et al. A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions , 2000, Math. Comput..
[15] Ricardo Ruiz-Baier,et al. A posteriori error analysis of an augmented mixed method for the Navier-Stokes equations with nonlinear viscosity , 2016, Comput. Math. Appl..
[16] Salim Meddahi,et al. A residual-based a posteriori error estimator for a two-dimensional fluid–solid interaction problem , 2009, Numerische Mathematik.
[17] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[18] Jian Su,et al. An Adaptive Finite Element Method for Stationary Incompressible Thermal Flow Based on Projection Error Estimation , 2013 .
[19] G. Gatica,et al. Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .
[20] G. Gatica,et al. A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model , 2017 .
[21] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[22] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[23] Karam Allali. A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR BOUSSINESQ EQUATIONS , 2005 .
[24] G. Gatica,et al. A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem , 2013 .
[25] Vincent J. Ervin,et al. A posteriori error estimation and adaptive computation of viscoelastic fluid flow , 2005 .
[26] Yanren Hou,et al. A posteriori error estimation and adaptive computation of conduction convection problems , 2011 .