Crystal structure of human XLF: a twist in nonhomologous DNA end-joining.

[1]  J. Boeke,et al.  A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining. , 2007, DNA repair.

[2]  T. E. Wilson,et al.  Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. , 2007, DNA repair.

[3]  G. Chu,et al.  Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends , 2007, Proceedings of the National Academy of Sciences.

[4]  U. Pannicke,et al.  Length-dependent Binding of Human XLF to DNA and Stimulation of XRCC4·DNA Ligase IV Activity* , 2007, Journal of Biological Chemistry.

[5]  P. Russell,et al.  Xlf1 Is Required for DNA Repair by Nonhomologous End Joining in Schizosaccharomyces pombe , 2007, Genetics.

[6]  S. Jackson,et al.  Evolutionary and Functional Conservation of the DNA Non-homologous End-joining Protein, XLF/Cernunnos* , 2006, Journal of Biological Chemistry.

[7]  A. Fischer,et al.  Cernunnos Interacts with the XRCC4·DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1* , 2006, Journal of Biological Chemistry.

[8]  Nicholas Furnham,et al.  Structure of an Xrcc4-DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. , 2006, DNA repair.

[9]  S. Jackson,et al.  XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining , 2006, Cell.

[10]  A. Fischer,et al.  Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly , 2006, Cell.

[11]  P. Penczek,et al.  ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane , 2005, Nature Structural &Molecular Biology.

[12]  T. Kunkel,et al.  A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. , 2005, Molecular cell.

[13]  Gilbert Chu,et al.  Processing of DNA for nonhomologous end‐joining by cell‐free extract , 2005, The EMBO journal.

[14]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[15]  David S. Wishart,et al.  SuperPose: a simple server for sophisticated structural superposition , 2004, Nucleic Acids Res..

[16]  R. Ghirlando,et al.  Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. , 2003, Journal of molecular biology.

[17]  P. Adams,et al.  Substructure search procedures for macromolecular structures. , 2003, Acta crystallographica. Section D, Biological crystallography.

[18]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[19]  J. Griffith,et al.  Synapsis of DNA ends by DNA‐dependent protein kinase , 2002, The EMBO journal.

[20]  Yunmei Ma,et al.  Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination , 2002, Cell.

[21]  B. L. Sibanda,et al.  Crystal structure of an Xrcc4–DNA ligase IV complex , 2001, Nature Structural Biology.

[22]  R. Ghirlando,et al.  Crystal structure of the Xrcc4 DNA repair protein and implications for end joining , 2000, The EMBO journal.

[23]  D. Ramsden,et al.  Ku Recruits the XRCC4-Ligase IV Complex to DNA Ends , 2000, Molecular and Cellular Biology.

[24]  F. Alt,et al.  Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development , 2000, Nature.

[25]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[26]  M. Gellert,et al.  DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity , 1999, The EMBO journal.

[27]  P. Jeggo Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. , 1998, Radiation research.

[28]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[29]  M. Lieber Warner-Lambert/Parke-Davis Award Lecture. Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. , 1998, The American journal of pathology.

[30]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[31]  M. Jasin,et al.  Ku80-deficient Cells Exhibit Excess Degradation of Extrachromosomal DNA* , 1996, The Journal of Biological Chemistry.

[32]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[33]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[34]  H. Green,et al.  Growth of cultured mammalian cells on secondary glucose sources. , 1974, Cell.