Acceleration of polytropic solar wind: Parker Solar Probe observation and one-dimensional model

The acceleration of the solar coronal plasma to supersonic speeds is one of the most fundamental yet unresolved problems in heliophysics. Despite the success of Parker's pioneering theory on an isothermal solar corona, the realistic solar wind is observed to be non-isothermal, and the decay of its temperature with radial distance usually can be fitted to a polytropic model. In this work, we use Parker Solar Probe data from the first nine encounters to estimate the polytropic index of solar wind protons. The estimated polytropic index varies roughly between 1.25 and 1.5 and depends strongly on solar wind speed, faster solar wind on average displaying a smaller polytropic index. We comprehensively analyze the 1D spherically symmetric solar wind model with the polytropic index [Formula: see text]. We derive a closed algebraic equation set for transonic stellar flows, that is, flows that pass the sound point smoothly. We show that an accelerating wind solution only exists in the parameter space bounded by [Formula: see text] and [Formula: see text], where C0 and Cg are the surface sound speed and one half of the escape velocity of the star, and no stellar wind exists for [Formula: see text]. With realistic solar coronal temperatures, the observed solar wind with [Formula: see text] cannot be explained by the simple polytropic model. We show that mechanisms such as strong heating in the lower corona that leads to a thick isothermal layer around the Sun and large-amplitude Alfvén wave pressure are necessary to remove the constraint in γ and accelerate the solar wind to high speeds.

[1]  R. Livi,et al.  The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters , 2022, The Astrophysical Journal.

[2]  P. Démoulin,et al.  Statistical Analysis of the Radial Evolution of the Solar Winds between 0.1 and 1 au and Their Semiempirical Isopoly Fluid Modeling , 2022, The Astrophysical Journal.

[3]  P. Louarn,et al.  Magnetic Field Intermittency in the Solar Wind: Parker Solar Probe and SolO Observations Ranging from the Alfvén Region up to 1 AU , 2022, The Astrophysical Journal.

[4]  C. Owen,et al.  Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions , 2021, The Astrophysical Journal.

[5]  Vasileios Karageorgopoulos,et al.  Polytropic wind solutions via the Complex Plane Strategy , 2021, Astron. Comput..

[6]  B. Chandran An approximate analytic solution to the coupled problems of coronal heating and solar-wind acceleration , 2021, Journal of Plasma Physics.

[7]  M. Velli,et al.  Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe , 2021, Astronomy & Astrophysics.

[8]  R. Wicks,et al.  Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe , 2020, The Astrophysical Journal.

[9]  R. Livi,et al.  Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations , 2019, The Astrophysical Journal Supplement Series.

[10]  R. Livi,et al.  The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data , 2019, The Astrophysical Journal Supplement Series.

[11]  D. Stansby,et al.  Highly structured slow solar wind emerging from an equatorial coronal hole , 2019, Nature.

[12]  N. Pogorelov,et al.  Alfvénic velocity spikes and rotational flows in the near-Sun solar wind , 2019, Nature.

[13]  George Livadiotis,et al.  Long-Term Independence of Solar Wind Polytropic Index on Plasma Flow Speed , 2018, Entropy.

[14]  T. Yokoyama,et al.  A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes , 2017, 1712.07760.

[15]  P. Sulem,et al.  Three-dimensional Simulations and Spacecraft Observations of Sub-ion Scale Turbulence in the Solar Wind: Influence of Landau Damping , 2017 .

[16]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[17]  Victor Réville VENTS ET MAGNÉTISME DES ÉTOILES DE TYPE SOLAIRE : Influence sur la rotation stellaire, la couronne et les (exo)planètes , 2016 .

[18]  John W. Belcher,et al.  Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus , 2015 .

[19]  G. Livadiotis,et al.  Long-Term Variability of the Polytropic Index of Solar Wind Protons at 1 AU , 2014 .

[20]  M. Velli,et al.  VALIDATING A TIME-DEPENDENT TURBULENCE-DRIVEN MODEL OF THE SOLAR WIND , 2014, 1402.4188.

[21]  J. Kasper,et al.  Sensitive test for ion-cyclotron resonant heating in the solar wind. , 2013, Physical review letters.

[22]  E. Quataert,et al.  INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE , 2011, 1110.3029.

[23]  M. Velli,et al.  A TURBULENCE-DRIVEN MODEL FOR HEATING AND ACCELERATION OF THE FAST WIND IN CORONAL HOLES , 2009, 0911.5221.

[24]  P. Démoulin Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections? , 2009 .

[25]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[26]  James A. Klimchuk,et al.  Nanoflare Heating of the Corona Revisited , 2004 .

[27]  M. Maksimović,et al.  Electron velocity distribution functions from the solar wind to the corona , 1999 .

[28]  C. Russell,et al.  Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU , 1998 .

[29]  E. Marsch,et al.  TWO-FLUID MODEL FOR HEATING OF THE SOLAR CORONA AND ACCELERATION OF THE SOLAR WIND BY HIGH-FREQUENCY ALFVÉN WAVES , 1997 .

[30]  M. Velli From Supersonic Winds to Accretion: Comments on the Stability of Stellar Winds and Related Flows , 1994 .

[31]  M. Velli On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds , 1993 .

[32]  M. Velli,et al.  Waves from the sun , 1991 .

[33]  M. Heinemann,et al.  Non‐WKB Alfvén waves in the solar wind , 1980 .

[34]  J. Hollweg,et al.  Collisionless electron heat conduction in the solar wind , 1976 .

[35]  J. Hollweg,et al.  On electron heat conduction in the solar wind , 1974 .

[36]  J. Hollweg,et al.  Transverse Alfvén waves in the solar wind: Arbitrary k, v 0, B 0, and |δB| , 1974 .

[37]  W. Axford,et al.  A two-fluid solar wind model with anisotropic proton temperature , 1972 .

[38]  J. Belcher ALFVÉNIC Wave Pressures and the Solar Wind , 1971 .

[39]  P. Sturrock,et al.  Two-Fluid Model of the Solar Wind , 1968 .

[40]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[41]  E. Parker Dynamical properties of stellar coronas and stellar winds. iv - the separate existence of subsonic and supersonic solutions. , 1965 .

[42]  E. Parker The Hydrodynamic Theory of Solar Corpuscular Radiation and Stellar Winds. , 1960 .

[43]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[44]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[45]  A. Narayanan Waves in the Sun , 2013 .

[46]  J. Freeman,et al.  An empirical determination of the polytropic index for the free‐streaming solar wind using Helios 1 data , 1995 .

[47]  T. Theuns,et al.  Spherically symmetric, polytropic flow , 1992 .

[48]  G. Alazraki,et al.  SOLAR-WIND ACCELERATION CAUSED BY THE GRADIENT OF ALFVEN-WAVE PRESSURE. , 1971 .

[49]  E. Parker DYNAMICAL PROPERTIES OF STELLAR CORONAS AND STELLAR WINDS. II- INTEGRATION OF THE HEAT FLOW EQUATION , 1964 .

[50]  E. Parker Dynamical properties of stellar coronas and stellar winds. i - integration of the momentum equation. , 1964 .