Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems

Abstract We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic multigrid. The increasing condition number of the matrix and loss of locality in the matrix stencil as p increases, in addition to the effect of weakly enforced Dirichlet boundary conditions all contribute to the challenging algebraic setting. We propose a smoothed aggregation approach that addresses these difficulties. In particular, the approach effectively coarsens degrees-of-freedom centered at the same spatial location as well as degrees-of-freedom at the domain boundary. Moreover, the character of the near null-space, particularly at the domain boundary, is captured by interpolation. One classic prolongation smoothing step of weighted-Jacobi is also shown to be ineffective at high-order, and a more robust energy-minimization approach is used, along with block relaxation that more directly utilizes the block diagonal structure of the discontinuous Galerkin discretization. Finally, we conclude by examining numerical results in support our proposed method.

[1]  Jacob B. Schroder,et al.  A new perspective on strength measures in algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[2]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[3]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[4]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[5]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[6]  Youngmok Jeon,et al.  A Hybrid Discontinuous Galerkin Method for Elliptic Problems , 2010, SIAM J. Numer. Anal..

[7]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[8]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems , 1982 .

[9]  Luke N. Olson Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh , 2007, SIAM J. Sci. Comput..

[10]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[11]  Guido Kanschat,et al.  Robust smoothers for high-order discontinuous Galerkin discretizations of advection-diffusion problems , 2008 .

[12]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[13]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[14]  Thomas A. Manteuffel,et al.  Algebraic multigrid for higher-order finite elements , 2005 .

[15]  Guido Kanschat,et al.  Preconditioning Methods for Local Discontinuous Galerkin Discretizations , 2003, SIAM J. Sci. Comput..

[16]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[17]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[18]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[19]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[20]  Jacob B. Schroder,et al.  A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..

[21]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[22]  Pieter W. Hemker,et al.  Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..

[23]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[24]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[25]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[26]  Ralf Hartmann,et al.  Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method , 2009, SIAM J. Sci. Comput..

[27]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[28]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[29]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[30]  B. T. Helenbrook,et al.  Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .

[31]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[32]  Paul F. Fischer,et al.  Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..