Markov Chains and Unambiguous Automata

Unambiguous automata are nondeterministic automata in which every word has at most one accepting run. In this paper we give a polynomial-time algorithm for model checking discrete-time Markov chains against $\omega$-regular specifications represented as unambiguous automata. We furthermore show that the complexity of this model checking problem lies in NC: the subclass of P comprising those problems solvable in poly-logarithmic parallel time. These complexity bounds match the known bounds for model checking Markov chains against specifications given as deterministic automata, notwithstanding the fact that unambiguous automata can be exponentially more succinct than deterministic automata. We report on an implementation of our procedure, including an experiment in which the implementation is used to model check LTL formulas on Markov chains.

[1]  Rastislav Lenhardt Tulip: Model Checking Probabilistic Systems Using Expectation Maximisation Algorithm , 2013, QEST.

[2]  Jan Kretínský,et al.  The Hanoi Omega-Automata Format , 2015, CAV.

[3]  Joost-Pieter Katoen,et al.  Parametric LTL on Markov Chains , 2014, IFIP TCS.

[4]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[5]  Christof Löding,et al.  Efficient inclusion testing for simple classes of unambiguous ω-automata , 2012, Inf. Process. Lett..

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  James Worrell,et al.  Two Variable vs. Linear Temporal Logic in Model Checking and Games , 2011, CONCUR.

[8]  Grégoire Sutre,et al.  An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems , 2003, LPAR.

[9]  Alexandre Duret-Lutz,et al.  LTL translation improvements in Spot 1.0 , 2014, Int. J. Crit. Comput. Based Syst..

[10]  Christel Baier,et al.  Experiments with deterministic omega-automata for formulas of linear temporal logic , 2006, Theor. Comput. Sci..

[11]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[12]  Andreas Morgenstern,et al.  Symbolic controller synthesis for LTL specifications , 2010 .

[13]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[14]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[15]  Thomas Colcombet Unambiguity in Automata Theory , 2015, DCFS.

[16]  Alexandre Duret-Lutz Manipulating LTL Formulas Using Spot 1.0 , 2013, ATVA.

[17]  Thomas Colcombet Forms of Determinism for Automata (Invited Talk) , 2012, STACS.

[18]  James Worrell,et al.  Model Checking Markov Chains Against Unambiguous Buchi Automata , 2014, ArXiv.

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[20]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[21]  V. Kulkarni Modeling and Analysis of Stochastic Systems , 1996 .

[22]  Martin Zimmermann Optimal bounds in parametric LTL games , 2013, Theor. Comput. Sci..

[23]  Jan Kretínský,et al.  From LTL to Deterministic Automata: A Safraless Compositional Approach , 2014, CAV.

[24]  Pierre Wolper,et al.  Reasoning about Infinite Computation Paths (Extended Abstract) , 1983, FOCS 1983.

[25]  Christof Löding,et al.  Equivalence and Inclusion Problem for Strongly Unambiguous Büchi Automata , 2010, LATA.

[26]  Sasha Rubin,et al.  Verifying omega-Regular Properties of Markov Chains , 2004, CAV.

[27]  Harry B. Hunt,et al.  On the equivalence and containment problems for unambiguous regular expressions, grammars, and automata , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[28]  Marta Z. Kwiatkowska,et al.  The PRISM Benchmark Suite , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.