Encyclopedia of supramolecular chemistry

Artificial Enzymes o DNA Nanotechnology o Drug Design o Imaging and Targeting o Natural Strategies for the Molecular Engineer o pi-pi interactions: theory and scope oSelf-Assembly in Biochemistry o Vibrational Spectroscopy

[1]  K. Pitzer,et al.  THE INFRARED SPECTRA OF MARGINALLY METALLIC SYSTEMS: SODIUM—AMMONIA SOLUTIONS , 1961 .

[2]  J. L. Dye,et al.  ABSORPTION SPECTRA OF THE ALKALI METALS IN ETHYLENEDIAMINE , 1964 .

[3]  Jordan J. Markham,et al.  F-Centers in Alkali Halides , 1966 .

[4]  C. Angell,et al.  Studies of cations in zeolites: adsorption of carbon monoxide; formation of Ni ions and Na3+4 centres , 1966 .

[5]  T. R. Tuttle,et al.  Origin of the 600‐mμ Band in the Spectra of Alkali‐Metal–Amine Solutions , 1968 .

[6]  J. L. Dye,et al.  Solubilization of alkali metals in tetrahydrofuran and diethyl ether by use of a cyclic polyether , 1970 .

[7]  J. L. Dye,et al.  Spectra of Na-, K-, and e-solv in amines and ethers , 1972 .

[8]  N. Kestner Electrons in liquid ammonia , 1977, Nature.

[9]  J. Lehn,et al.  Optical spectra of alkali metal anion and ’’electride’’ films , 1978 .

[10]  Thermodynamics of formation of a crystalline salt of the sodium anion , 1982 .

[11]  D. L. Ward,et al.  First electride crystal structure , 1986 .

[12]  Cesium-133 solid-state nuclear magnetic resonance spectroscopy of alkalides and electrides , 1987 .

[13]  D. L. Ward,et al.  Structure of K+(cryptand[2.2.2J) electride and evidence for trapped electron pairs , 1988, Nature.

[14]  Alkali-metal-anion dimers and chains in alkalide structures , 1989 .

[15]  Synthesis and Structures of Two Thermally Stable Sodides with the Macrocyclic Complexant Hexamethyl Hexacyclen. , 1989 .

[16]  J. L. Dye,et al.  Electrides: Ionic Salts with Electrons as the Anions , 1990, Science.

[17]  J. L. Dye,et al.  Nanoscale metal particles by homogeneous reduction with alkalides or electrides , 1991 .

[18]  The Electronic Structure of K2‐ 2 , 1991 .

[19]  J. E. Jackson,et al.  An unusual reduction of ethylene occurring during the thermal decomposition of alkalides and electrides. , 1991 .

[20]  David J. Singh,et al.  Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e- , 1993, Nature.

[21]  EFFECT OF LASER PULSES ON THE PHOTOELECTRON EMISSION FROM NA+(C222)NA- , 1994 .

[22]  OPTICAL ABSORPTION AND REFLECTION SPECTRA OF NA+(C222)NA- , 1996 .

[23]  P. Edwards,et al.  Dissolved Alkali Metals in Zeolites. , 1996, Accounts of chemical research.

[24]  David Tománek,et al.  Cavities and Channels in Electrides , 1996 .

[25]  J. L. Eglin,et al.  87Rb, 85Rb, and 39K NMR Studies of Alkalides, Electrides, and Related Compounds , 1996 .

[26]  J. L. Dye,et al.  Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals† , 1997 .

[27]  Novel Electron-Transfer Reactions Mediated by Alkali Metals Complexed by Macrocyclic Ligand , 1998 .

[28]  É. Lippmaa,et al.  Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers , 1998 .

[29]  R. Phillips,et al.  Thermionic Emission from Cold Electride Films , 2000 .

[30]  Structure and Properties of a New Electride, Rb+(cryptand[2.2.2])e. , 2000, Journal of the American Chemical Society.

[31]  A. Wagner,et al.  Anisotropic Charge Transport and Spin−Spin Interactions in K+(Cryptand [2.2.2]) Electride , 2002 .