Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects

The concept of optimization—finding the extrema of a function that maps candidate’ solutions’ to scalar values of ‘quality’—is an extremely general and useful idea that can be, and is, applied to innumerable problems in science, industry, and commerce. However, the vast majority of ‘real’ optimization problems, whatever their origins, comprise more than one objective; that is to say, ‘quality’ is actually a vector, which may be composed of such distinct attributes as cost, performance, profit, environmental impact, and so forth, which are often in mutual conflict. Until relatively recently this uncomfortable truth has been (wilfully?) overlooked in the sciences dealing with optimization, but now, increasingly, the idea of multiobjective optimization is taking over the centre ground. Multiobjective optimization takes seriously the fact that in most problems the different components that describe the quality of a candidate solution cannot be lumped together into one representative, overall measure, at least not easily, and not before some understanding of the possible ‘tradeoffs’ available has been established. Hence a multiobjective optimization algorithm is one which deals directly with a vector objective function and seeks to find multiple solutions offering different, optimal tradeoffs of the multiple objectives. This approach raises several unique issues in optimization algorithm design, which we consider in this article, with a particular focus on memetic algorithms (MAs). We summarize much of the relevant literature, attempting to be inclusive of relatively unexplored ideas, highlight the most important considerations for the design of multiobjective MAs, and finally outline our visions for future research in this exciting area.

[1]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[2]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[5]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[6]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[7]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[8]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[9]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[10]  Carlos M. Fonseca,et al.  Multiobjective optimal controller design with genetic algorithms , 1994 .

[11]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[12]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[13]  William B. Langdon,et al.  Scheduling Maintenance of Electrical Power Transmission Networks Using Genetic Programming , 1996 .

[14]  P. Fleming,et al.  An Evolutionary Algorithm Approach For Solving Optimal Control Problems , 1996 .

[15]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Ulrich Korn,et al.  Multicriteria Control System Design Using An Intelligent Evolution Strategy With Dynamical Constrain , 1997 .

[17]  Kay Chen Tan,et al.  Multi-Objective Genetic Algorithm Based Time and Frequency Domain Design Unification of Linear Control Systems , 1997 .

[18]  Dragan Savic,et al.  WATER NETWORK REHABILITATION WITH STRUCTURED MESSY GENETIC ALGORITHM , 1997 .

[19]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[22]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[23]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[24]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[25]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[26]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[27]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[28]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[29]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[30]  Ni-Bin Chang,et al.  Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling , 1998 .

[31]  É. Taillard,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[32]  Andrzej Jaszkiewicz,et al.  Fuzzy Multi-Mode Resource-Constrained Project Scheduling with multiple Objectives , 1999 .

[33]  Ian C. Parmee,et al.  Use of Preferences for GA-based Multi-objective Optimisation , 1999, GECCO.

[34]  Luca Maria Gambardella,et al.  A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows , 1999 .

[35]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[36]  Donald E. Grierson,et al.  Pareto‐Optimal Conceptual Design of the Structural Layout of Buildings Using a Multicriteria Genetic Algorithm , 1999 .

[37]  Peter J. Fleming Designing control systems with multiple objectives , 1999 .

[38]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[39]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[40]  Dongkyung Nam,et al.  Design of a neural controller using multiobjective optimization for nonminimum phase systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[41]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[42]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[43]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[44]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[45]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[46]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[47]  Gary B. Lamont,et al.  Multiobjective optimization with messy genetic algorithms , 2000, SAC '00.

[48]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[49]  Amnon Barak,et al.  Evolution Strategies for a Parallel Multi-Objective Genetic Algorithm , 2000, GECCO.

[50]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[51]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[52]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[53]  Mitsuo Gen,et al.  Cellular Genetic Local Search for Multi-Objective Optimization , 2000, GECCO.

[54]  Ian C. Parmee,et al.  Multiobjective Satisfaction within an Interactive Evolutionary Design Environment , 2000, Evolutionary Computation.

[55]  A.A. Abido A new multiobjective evolutionary algorithm for environmental/economic power dispatch , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[56]  Rolf Drechsler,et al.  Multi-objective Optimisation Based on Relation Favour , 2001, EMO.

[57]  Jeanne S. Yulianti,et al.  Waste-Load Allocation Using Genetic Algorithms , 2001 .

[58]  Mikkel T. Jensen,et al.  Robust and Flexible Scheduling with Evolutionary Computation , 2001 .

[59]  Eleonora Riva Sanseverino,et al.  Evolving non-dominated solutions in multiobjective service restoration for automated distribution networks , 2001 .

[60]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[61]  Hussein A. Abbass,et al.  A Memetic Pareto Evolutionary Approach to Artificial Neural Networks , 2001, Australian Joint Conference on Artificial Intelligence.

[62]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[63]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[64]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[65]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[66]  Michael Kirley,et al.  MEA: a metapopulation evolutionary algorithm for multi-objective optimisation problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[67]  R. J. Balling,et al.  The maximin fitness function for multi-objective evolutionary computation: application to city planning , 2001 .

[68]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[69]  Dirk Thierens,et al.  Multi-objective mixture-based iterated density estimation evolutionary algorithms , 2001 .

[70]  Carlos M. Fonseca,et al.  A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms , 2001 .

[71]  U. Fernandez,et al.  Reactive power compensation using a multi-objective evolutionary algorithm , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[72]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[73]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[74]  Clarisse Dhaenens,et al.  A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop , 2001, EMO.

[75]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[76]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[77]  E.K. Burke,et al.  A multi criteria meta-heuristic approach to nurse rostering , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[78]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[79]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[80]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.

[81]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[82]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Multi-Objective Optimization Algorithms , 2002, HIS.

[83]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[84]  David E. Goldberg,et al.  Multi-objective bayesian optimization algorithm , 2002 .

[85]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[86]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[87]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[88]  J. Schwarz Evolutionary Multiobjective Bayesian Optimization Algorithm : Experimental Study , 2002 .

[89]  Larry Bull,et al.  Consideration of Multiple Objectives in Neural Learning Classifier Systems , 2002, PPSN.

[90]  Hisao Ishibuchi,et al.  Selection of initial solutions for local search in multiobjective genetic local search , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[91]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[92]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[93]  Marco Laumanns,et al.  Archiving With Guaranteed Convergence And Diversity In Multi-objective Optimization , 2002, GECCO.

[94]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[95]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[96]  Martin Middendorf,et al.  Solving Multi-criteria Optimization Problems with Population-Based ACO , 2003, EMO.

[97]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[98]  Carlos A. Coello Coello,et al.  Evolutionary Algorithms and Multiple Objective Optimization , 2003 .

[99]  Hisao Ishibuchi,et al.  Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms , 2003, GECCO.

[100]  Hisao Ishibuchi,et al.  An Empirical Study on the Effect of Mating Restriction on the Search Ability of EMO Algorithms , 2003, EMO.

[101]  Mikkel T. Jensen,et al.  Guiding Single-Objective Optimization Using Multi-objective Methods , 2003, EvoWorkshops.

[102]  David W. Corne,et al.  No Free Lunch and Free Leftovers Theorems for Multiobjective Optimisation Problems , 2003, EMO.

[103]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[104]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[105]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[106]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[107]  Andrzej Jaszkiewicz,et al.  Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem , 2003, IEEE Trans. Evol. Comput..

[108]  Kalyanmoy Deb,et al.  Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications , 2003, EMO.

[109]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[110]  Gary G. Yen,et al.  Hierarchical Rank Density Genetic Algorithm for Radial-Basis Function Neural Network Design , 2003, Int. J. Comput. Intell. Appl..

[111]  Marco Farina,et al.  Fuzzy Optimality and Evolutionary Multiobjective Optimization , 2003, EMO.

[112]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[113]  P. J. Fleming,et al.  The good of the many outweighs the good of the one: evolutionary multi-objective optimization , 2003 .

[114]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[115]  David Corne,et al.  Bounded Pareto Archiving: Theory and Practice , 2004, Metaheuristics for Multiobjective Optimisation.

[116]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[117]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .