3-Isobutyl-1-methylxanthine (IBMX) affects potassium permeability in rat sensory neurones via pathways that are sensitive and insensitive to [Ca2+]in

[1]  A. Verkhratsky,et al.  IBMX induces calcium release from intracellular stores in rat sensory neurones. , 1995, Cell calcium.

[2]  P. Kostyuk,et al.  Calcium stores in neurons and glia , 1994, Neuroscience.

[3]  D. O'Malley,et al.  Regulation of M current by intracellular calcium in bullfrog sympathetic ganglion neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  A. Verkhratsky,et al.  Caffeine-induced calcium release from internal stores in cultured rat sensory neurons , 1993, Neuroscience.

[5]  N. Akaike,et al.  Theophylline affects three different potassium currents in dissociated rat cortical neurones. , 1993, The Journal of physiology.

[6]  N. Akaike,et al.  Caffeine response in pyramidal neurons freshly dissociated from rat hippocampus , 1993, Brain Research.

[7]  D. A. Brown,et al.  Kinetic and pharmacological properties of the M‐current in rodent neuroblastoma x glioma hybrid cells. , 1992, The Journal of physiology.

[8]  D. Friel,et al.  A caffeine‐ and ryanodine‐sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i. , 1992, The Journal of physiology.

[9]  N. Akaike,et al.  Kinetic properties of the caffeine‐induced transient outward current in bull‐frog sympathetic neurones. , 1991, The Journal of physiology.

[10]  N. Akaike,et al.  Caffeine affects four different ionic currents in the bull‐frog sympathetic neurone. , 1989, The Journal of physiology.

[11]  W. Almers,et al.  Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression , 1988, Neuron.

[12]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[13]  T. Smart Single calcium‐activated potassium channels recorded from cultured rat sympathetic neurones. , 1987, The Journal of physiology.

[14]  P. Adams,et al.  Spontaneous miniature outward currents in cultured bullfrog neurons , 1987, Brain Research.

[15]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[16]  D. A. Brown,et al.  Ca-activated potassium current in vertebrate sympathetic neurons. , 1983, Cell calcium.

[17]  D. A. Brown,et al.  Synaptic inhibition of the M‐current: slow excitatory post‐synaptic potential mechanism in bullfrog sympathetic neurones. , 1982, The Journal of physiology.

[18]  D. A. Brown,et al.  Pharmacological inhibition of the M‐current , 1982, The Journal of physiology.

[19]  T. Akasu,et al.  Identification of gK systems activated by [Ca2+] , 1982, Brain Research.

[20]  D. A. Brown,et al.  Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones , 1982, Nature.

[21]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[22]  S. Kirischuk,et al.  Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurones , 2004, Pflügers Archiv.

[23]  N. Marrion,et al.  Release of intracellular calcium and modulation of membrane currents by caffeine in bull‐frog sympathetic neurones. , 1992, The Journal of physiology.