A Review of the Systems Approach to the Analysis of Dynamic-Mode Atomic Force Microscopy

The atomic force microscope (AFM) is one of the foremost tools for imaging, measuring and manipulating matter at the nanoscale. This brief presents a review of the systems and control approach to analyzing the challenging dynamic-mode operation of the AFM. A Lure system perspective of the AFM dynamics facilitates the application of powerful tools from systems theory for the analysis. The harmonic balance method provides significant insights into the steady-state behavior as well as a framework for identifying the tip-sample interaction force. A simple piecewise-linear tip-sample interaction model and its identification using the harmonic balance method is presented. The dominant first harmonic is analyzed using multivalued frequency responses and the corresponding stability conditions. The ability of the simple tip-sample interaction model to capture the intricate nonlinear behavior of the first harmonic is demonstrated. This also points to the importance of studying the higher harmonics to obtain finer details of the tip-sample interaction. The suitability of the Lure system perspective for the analysis of the higher harmonics is demonstrated.

[1]  Georg Schitter,et al.  State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy , 2004 .

[2]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[3]  U. Dürig,et al.  Conservative and dissipative interactions in dynamic force microscopy , 1999 .

[4]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[5]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[6]  Arvind Raman,et al.  Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy , 2005 .

[7]  A. Sebastian,et al.  The amplitude phase dynamics and fixed points in tapping-mode atomic force microscopy , 2004, Proceedings of the 2004 American Control Conference.

[8]  Murti V. Salapaka,et al.  Thermally driven non-contact atomic force microscopy , 2005 .

[9]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[10]  Murti V. Salapaka,et al.  Transient-signal-based sample-detection in atomic force microscopy , 2003 .

[11]  M. Tsukada,et al.  Damping mechanism in dynamic force microscopy. , 2000, Physical review letters.

[12]  Andreas Stemmer,et al.  Estimating the transfer function of the cantilever in atomic force microscopy: A system identification approach , 2005 .

[13]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[14]  E. McFarland,et al.  Multi-mode noise analysis of cantilevers for scanning probe microscopy , 1997 .

[15]  I. Mezić,et al.  On the Dynamics of a Harmonic Oscillator Undergoing Impacts with a Vibrating Platform , 2001 .

[16]  M. Franchek,et al.  Frequency Domain Identification of Tip-sample van der Waals Interactions in Resonant Atomic Force Microcantilevers , 2004 .

[17]  Murti V. Salapaka,et al.  Harmonic analysis based modeling of tapping-mode AFM , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  F. Giessibl Higher‐harmonic atomic force microscopy , 2006 .

[19]  Olav Solgaard,et al.  Resonant harmonic response in tapping-mode atomic force microscopy , 2004 .

[20]  A. Rantzer,et al.  Harmonic analysis of nonlinear and uncertain systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[21]  Murti V. Salapaka,et al.  Linearity of amplitude and phase in tapping-mode atomic force microscopy , 2000 .

[22]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[23]  Toma s R. Rodri guez,et al.  Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models , 2002 .

[24]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[25]  Robert W. Stark,et al.  Spectroscopy of higher harmonics in dynamic atomic force microscopy , 2004 .

[26]  Georg Schitter,et al.  Tuning the interaction forces in tapping mode atomic force microscopy , 2003 .

[27]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Murti V. Salapaka,et al.  Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .

[29]  A. Sebastian,et al.  Analysis of periodic solutions in tapping-mode AFM : An IQC approach , 2002 .

[30]  Abu Sebastian,et al.  Nanotechnology: a systems and control approach , 2004 .

[31]  Murti V. Salapaka,et al.  Real-time detection of probe loss in atomic force microscopy , 2006 .

[32]  Arvind Raman,et al.  Chaos in atomic force microscopy. , 2006, Physical review letters.