Configuration Maintenance of Inflated Membrane Structures Using SMA Film Actuators

This work was supported by the second state of the Brain Korea 21 Project in 2007. The authors also acknowledge the support by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-357-D00045).

[1]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[2]  M. Salama,et al.  On-Orbit Shape Correction of Inflatable Structures , 1994 .

[3]  Shuichi Miyazaki,et al.  Deformation behaviour associated with the stress-induced martensitic transformation in Ti–Ni thin films and their thermodynamical modelling , 1998 .

[4]  John M. Hedgepeth,et al.  Finite element analysis of partly wrinkled membranes , 1985 .

[5]  Daniel J. Inman,et al.  Finite Element Modeling and Active Control of an Inflated Torus Using Piezoelectric Devices , 2001 .

[6]  Keith K. Denoyer,et al.  Approach for Efficiently Evaluating Internally Reacted Global Shape Control Actuation Strategies for Apertures , 2003 .

[7]  In Lee,et al.  Nonlinear Finite Element Simulation of Shape Adaptive Structures with SMA Strip Actuator , 2006 .

[8]  C. H. Jenkins,et al.  Analysis of Wrinkling Behavior of Anisotropic Membrane , 2004 .

[9]  Jae-Hung Han,et al.  Wrinkling control of inflatable booms using shape memory alloy wires , 2007 .

[10]  Gregory S. Agnes,et al.  Optical Metrology of Adaptive Membrane Mirrors , 2000 .

[11]  Christopher Jenkins,et al.  Gore/seam architectures for gossamer structures , 2001 .

[12]  R. E. Freeland,et al.  Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure , 1995 .

[13]  Christopher Jenkins,et al.  Modeling of an Active Seam Antenna , 2003 .