Pointwise estimates and exponential laws in metastable systems via coupling methods

We show how coupling techniques can be used in some metastable systems to prove that mean metastable exit times are almost constant as functions of the starting microscopic configuration within a "meta-stable set." In the example of the Random Field Curie Weiss model, we show that these ideas can also be used to prove asymptotic exponentiallity of normalized metastable escape times.

[1]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[2]  A. Bovier,et al.  Metastability and Low Lying Spectra¶in Reversible Markov Chains , 2000, math/0007160.

[3]  A. Bovier,et al.  Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .

[4]  F. Martinelli,et al.  Small random perturbations of finite- and infinite-dimensional dynamical systems: Unpredictability of exit times , 1989 .

[6]  A. Bovier,et al.  Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .

[7]  Y. Peres,et al.  Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability , 2007, 0712.0790.

[8]  M. Biskup,et al.  Methods of Contemporary Mathematical Statistical Physics , 2009 .

[9]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[10]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[11]  A. Bovier,et al.  Metastability in stochastic dynamics of disordered mean-field models , 1998, cond-mat/9811331.

[12]  P. Mathieu,et al.  Metastability and Convergence to Equilibrium for the Random Field Curie–Weiss Model , 1998 .

[13]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[14]  A. Bovier,et al.  Sharp asymptotics for metastability in the random field Curie-Weiss model , 2008, 0806.4478.

[15]  Fabio Martinelli,et al.  Small random perturbations of dynamical systems: Exponential loss of memory of the initial condition , 1988 .

[16]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .