The hypoelliptic Laplacian on the cotangent bundle

Introduction 380 1. Generalized metrics and determinants 386 1.1. Determinants 386 1.2. A generalized metric on E· 387 1.3. The Hodge theory of h · 387 1.4. A generalized metric on detE· 389 1.5. Determinant of the generalized Laplacian and generalized metrics 391 1.6. Truncating the spectrum of the generalized Laplacian 392 1.7. Generalized metrics on determinant bundles 393 1.8. Determinants and flat superconnections 394 1.9. The Hodge theorem as an open condition 395 1.10. Generalized metrics and flat superconnections 395 1.11. Analyticity and the Hodge condition 397 1.12. The equivariant determinant 397 2. The adjoint of the de Rham operator on the cotangent bundle 399 2.1. Clifford algebras 400 2.2. Vector spaces and bilinear forms 400 2.3. The adjoint of the de Rham operator with respect to a nondegenerate bilinear form 402 2.4. The symplectic adjoint of the de Rham operator 403 2.5. The de Rham operator on T ∗X and its symplectic adjoint 404 2.6. A bilinear form on T ∗X and the adjoint of d ∗X 407 2.7. A fundamental symmetry 408 2.8. A Hamiltonian function 409 2.9. The symmetry in the case where H is r-invariant 412 2.10. Poincaré duality 412 2.11. A conjugation of the de Rham operator 413 2.12. The scaling of the variable p 415 2.13. The classical Hamiltonians 418

[1]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[2]  J. Bismut On certain infinite dimensional aspects of Arakelov intersection theory , 1992 .

[3]  David Fried Torsion and closed geodesics on complex hyperbolic manifolds , 1988 .

[4]  J. Bismut,et al.  Quillen metrics and higher analytic torsion forms. , 1994 .

[5]  J. Bismut,et al.  Families torsion and Morse functions , 2002, Astérisque.

[6]  J. Bismut Une déformation de la théorie de Hodge sur le fibré cotangent , 2004 .

[7]  J. Bismut Index theorem and equivariant cohomology on the loop space , 1985 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  J. Bismut,et al.  Milnor and ray-singer metrics on the equivariant determinant of a flat vector bundle , 1994 .

[10]  D. Quillen,et al.  Superconnections, thom classes, and equivariant differential forms , 1986 .

[11]  H. Moscovici,et al.  R-torsion and zeta functions for locally symmetric manifolds , 1991 .

[12]  J. Bismut,et al.  Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion , 1988 .

[13]  J. Bismut Holomorphic Families of Immersions and Higher Analytic Torsion Forms , 2018, Astérisque.

[14]  David Fried The zeta functions of Ruelle and Selberg. I , 1986 .

[15]  J. Bismut,et al.  An extension of a theorem by Cheeger and Müller , 1992 .

[16]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[17]  Le laplacien hypoelliptique sur le fibré cotangent , 2004 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  J. Bismut,et al.  Equivariant de Rham torsions , 2004 .

[20]  Bernard Helffer,et al.  Puits multiples en mecanique semi-classique iv etude du complexe de witten , 1985 .

[21]  J. Bismut Holomorphic and de Rham torsion , 2004, Compositio Mathematica.

[22]  J. Bismut The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs , 1986 .

[23]  J. Cheeger Analytic torsion and the heat-equation , 1979 .

[24]  J. Bismut Equivariant immersions and Quillen metrics , 1995 .

[25]  Werner Müller,et al.  Analytic torsion and R-torsion of Riemannian manifolds , 1978 .

[26]  E. Witten Supersymmetry and Morse theory , 1982 .

[27]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[28]  R. Bott The Stable Homotopy of the Classical Groups , 1959 .

[29]  B. M. Fulk MATH , 1992 .

[30]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[31]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[32]  J. Bismut,et al.  Flat vector bundles, direct images and higher real analytic torsion , 1995 .

[33]  J. Bismut Le Laplacien hypoelliptique , 2004 .

[34]  A. Kolmogoroff,et al.  Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .

[35]  J. Bismut,et al.  The analysis of elliptic families. I. Metrics and connections on determinant bundles , 1986 .

[36]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[37]  J. Bismut,et al.  Complex immersions and Quillen metrics , 1991 .

[38]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[39]  D. Quillen Superconnections and the Chern character , 1985 .

[40]  I. Singer,et al.  R-Torsion and the Laplacian on Riemannian manifolds , 1971 .