Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable

The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The aim of clusterwise linear regression analysis is to embed the techniques of clustering into regression analysis. In this way, the clustering methods are utilized for overcoming the heterogeneity problem in regression analysis. Furthermore, by integrating cluster analysis into the regression framework, the regression parameters (regression analysis) and membership degrees (cluster analysis) can be estimated simultaneously by optimizing one single objective function. In this paper the clusterwise linear regression has been analyzed in a fuzzy framework. In particular, a fuzzy clusterwise linear regression model (FCWLR model) with symmetrical fuzzy output and crisp input variables for performing fuzzy cluster analysis within a fuzzy linear regression framework is suggested. For measuring the goodness of fit of the suggested FCWLR model with fuzzy output, a fitting index is proposed. In order to illustrate the usefulness of FCWLR model in practice, several applications to artificial and real datasets are shown.

[1]  Gilbert Saporta,et al.  Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..

[2]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[3]  W. Näther On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data , 2000 .

[4]  Pierpaolo D'Urso,et al.  Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information , 2003 .

[5]  Y. Y. Hong,et al.  Development of Energy Loss Formula for Distribution Systems Using FCN Algorithm and Cluster-Wise Fuzzy Regression , 2002, IEEE Power Engineering Review.

[6]  R. D. Veaux,et al.  Mixtures of linear regressions , 1989 .

[7]  Jacek M. Leski Epsiv-insensitive Fuzzy C-regression Models: Introduction to Epsiv-insensitive Fuzzy Modeling , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Pui Lam Leung,et al.  A mathematical programming approach to clusterwise regression model and its extensions , 1999, Eur. J. Oper. Res..

[9]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[10]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[11]  Lucien Duckstein,et al.  Multiobjective fuzzy regression with central tendency and possibilistic properties , 2002, Fuzzy Sets Syst..

[12]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[13]  Lucien Duckstein,et al.  Comparison of fuzzy numbers using a fuzzy distance measure , 2002, Fuzzy Sets Syst..

[14]  S Bologna,et al.  On Clusterwise Linear Regression , 2005 .

[15]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[16]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[17]  Miin-Shen Yang,et al.  Fuzzy clustering procedures for conical fuzzy vector data , 1999, Fuzzy Sets Syst..

[18]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[19]  Pascale G. Quester,et al.  Predicting business ethical tolerance in international markets: a concomitant clusterwise regression analysis , 2003 .

[20]  W. Woodall,et al.  A probabilistic and statistical view of fuzzy methods , 1995 .

[21]  Xiaogang Wang,et al.  Linear grouping using orthogonal regression , 2006, Comput. Stat. Data Anal..

[22]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[23]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[24]  Chung-Chun Kung,et al.  A novel cluster validity criterion for fuzzy c-regression model clustering algorithm , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[25]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[26]  Yuehua Wu,et al.  A consistent procedure for determining the number of clusters in regression clustering , 2005 .

[27]  David David Maximum likelihood estimates of the parameters of a mixture of two regression lines , 1974 .

[28]  Christian Hennig,et al.  Clusters, outliers, and regression: fixed point clusters , 2003 .

[29]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[30]  Yun Kyong Kim,et al.  Some properties of a new metric on the space of fuzzy numbers , 2004, Fuzzy Sets Syst..

[31]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[32]  Miin-Shen Yang,et al.  On cluster-wise fuzzy regression analysis , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Carlo Bertoluzza,et al.  On a new class of distances between fuzzy numbers , 1995 .

[34]  Christian Hennig,et al.  Identifiablity of Models for Clusterwise Linear Regression , 2000, J. Classif..

[35]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[36]  Pierpaolo D'Urso,et al.  Goodness of fit and variable selection in the fuzzy multiple linear regression , 2006, Fuzzy Sets Syst..

[37]  Pierpaolo D'Urso,et al.  An "orderwise" polynomial regression procedure for fuzzy data , 2002, Fuzzy Sets Syst..