Mid-frequency vibro-acoustic modelling: challenges and potential solutions

At present, the main numerical modelling techniques for acoustic and (coupled) vibro-acoustic analysis are based on element based techniques, such as the finite element and boundary element method. Due to the huge computational efforts, the use of these deterministic techniques is practically restricted to lowfrequency applications. For high-frequency modelling, some alternative, probabilistic techniques such as SEA have been developed. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available at the moment. In this frequency range, the computational efforts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current mid-frequency problem. This paper discusses the various methodologies that are being explored in this perspective. The main focus of this paper lies on the methodology that looks for deterministic techniques with an enhanced convergence rate and computational efficiency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. In this respect, special attention is paid to the wave based prediction technique for (coupled) vibro-acoustic analysis that is being developed at the KULeuven Noise and Vibration Research group. The method is based on an indirect Trefftz approach. Various recent validations have revealed the beneficial convergence rate of this novel technique, thereby exhibiting its potential to comply with the mid-frequency modelling challenge.

[1]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[2]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[3]  M. Ochmann The full-field equations for acoustic radiation and scattering , 1999 .

[4]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[5]  Romualdas Bausys,et al.  Adaptive Finite Element Strategy for Acoustic Problems , 1999 .

[6]  L. Thompson Design and analysis of space‐time and Galerkin/least‐squares finite element methods for fluid‐structure interaction in exterior domains , 1994 .

[7]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[8]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[9]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[10]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[11]  Bouchet,et al.  Calculation of acoustic radiation using equivalent-sphere methods , 2000, The Journal of the Acoustical Society of America.

[12]  Wim Desmet,et al.  A coupled finite element - wave based approach for the steady-state dynamic analysis of coupled structural-acoustic systems , 2002 .

[13]  F. Rammerstorfer,et al.  A Coupled Partition of Unity: Element-Free Galerkin Method for 2D Vibro- Acoustics , 2002 .

[14]  P. Pinsky,et al.  A galerkin least-squares finite element method for the two-dimensional Helmholtz equation , 1995 .

[15]  Ismael Herrera,et al.  Boundary methods : an algebraic theory , 1984 .

[16]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[17]  O. C. Zienkiewicz,et al.  Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions , 1989 .

[18]  Omar Laghrouche,et al.  Short wave modelling using special finite elements , 2000 .

[19]  A. Craggs,et al.  An acoustic finite element approach for studying boundary flexibility and sound transmission between irregular enclosures , 1973 .

[20]  Wim Desmet,et al.  A Coupled Finite Element–Wave Based Approach for the Steady-State Dynamic Analysis of Acoustic Systems , 2001 .

[21]  Karl Meerbergen,et al.  Application of a domain decomposition method with Lagrange multipliers to acoustic problems arising , 2000 .

[22]  C. Farhat,et al.  Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems , 2000 .

[23]  W. Desmet,et al.  A Trefftz-based prediction technique for the steady-state dynamic analysis of coupled plates , 1999 .

[24]  Christian Soize,et al.  Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities , 1999 .

[25]  Robert J. Bernhard,et al.  Structural-acoustic design at high frequency using the energy finite element method , 1999 .

[26]  Bert Pluymers,et al.  On the use of a wave based prediction technique for vehicle interior acoustics , 2001 .

[27]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[28]  P. Bouillard,et al.  A Timoshenko beam under forced vibrations solved by the Partition of Unity Method , 2001 .

[29]  Robert J. Bernhard,et al.  Review of numerical solutions for low-frequency structural-acoustic problems , 1994 .

[30]  Paul Bremner,et al.  A Hybrid Method for Full Spectrum Noise and Vibration Prediction , 2003 .

[31]  J. Semblat,et al.  EFFICIENCY OF HIGHER ORDER FINITE ELEMENTS FOR THE ANALYSIS OF SEISMIC WAVE PROPAGATION , 2000, 0901.3715.

[32]  Wim Desmet,et al.  A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems , 2000 .

[33]  Neil Ferguson,et al.  Modelling with the spectral FEM for turbulence excitation of cylindrical pipes , 2001 .

[34]  J. Jirousek,et al.  T-elements: State of the art and future trends , 1996 .

[35]  James F. Doyle,et al.  Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms , 1997 .

[36]  Thomas J. R. Hughes,et al.  h-Adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions , 1997 .

[37]  P. Bouillard,et al.  Efficiency of A Residual a posteriori Error Estimator for the Finite Element Solution of the Helmholtz Equation , 2001 .

[38]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[39]  Grégoire Winckelmans,et al.  A multiple multipole expansion approach for predicting the sound power of vibrating structures , 1999 .

[40]  Isaac Harari,et al.  Improved finite element methods for elastic waves , 1998 .

[41]  W. Desmet,et al.  Performance of a wave based prediction technique for three-dimensional coupled vibro-acoustic analysis , 1998 .

[42]  R. J. Astley,et al.  The performance of spheroidal infinite elements , 2001 .

[43]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[44]  Charbel Farhat,et al.  Iterative solution of large‐scale acoustic scattering problems with multiple right hand‐sides by a domain decomposition method with Lagrange multipliers , 2001 .

[45]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[46]  A. Kropp,et al.  Efficient Broadband Vibro-Acoustic Analysis of Passenger Car Bodies Using an FE-Based Component Mode Synthesis Approach , 2003 .

[47]  P. Bettess,et al.  Special finite elements for high frequency elastodynamic problems: first numerical experiments , 2001 .

[48]  José Roberto de França Arruda,et al.  Spectral element-based prediction of active power flow in Timoshenko beams , 2001 .

[49]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[50]  Yoon Young Kim,et al.  Applications of waveguide-type base functions for the eigenproblems of two-dimensional cavities , 1999 .

[51]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[52]  S. H. Sung,et al.  Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams , 1989 .

[53]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[54]  P. Bouillard,et al.  Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications , 1999 .

[55]  Jan Mandel,et al.  An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic Problems , 2002 .

[56]  S. Elliott,et al.  AN EQUIVALENT SOURCE TECHNIQUE FOR CALCULATING THE SOUND FIELD INSIDE AN ENCLOSURE CONTAINING SCATTERING OBJECTS , 1998 .

[57]  E. Kita,et al.  Trefftz method: an overview , 1995 .

[58]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[59]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[60]  Boundary methods, c-complete systems for stokes problems , 1982 .

[61]  Thomas J. R. Hughes,et al.  Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality , 1996 .

[62]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[63]  P. Barbone,et al.  Numerical and spectral investigations of Trefftz infinite elements , 1999 .

[64]  Svante Finnveden,et al.  Calculation of wave propagation in rib-stiffened plate structures , 1996 .

[65]  Frank Ihlenburg,et al.  On the pollution effect in FE solutions of the 3D-Helmholtz equation , 1999 .

[66]  J. Cipolla Subgrid modeling in a Galerkin method for the Helmholtz equation , 1999 .

[67]  R. Craig A review of time-domain and frequency-domain component mode synthesis method , 1985 .

[68]  Charbel Farhat,et al.  Residual-Free Bubbles for the Helmholtz Equation , 1996 .

[69]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[70]  S. Finnveden SPECTRAL FINITE ELEMENT ANALYSIS OF THE VIBRATION OF STRAIGHT FLUID-FILLED PIPES WITH FLANGES , 1997 .

[71]  P. Pinsky,et al.  Galerkin Generalized Least Squares finite element methods for time-harmonic structural acoustics , 1998 .

[72]  Bert Pluymers,et al.  A wave based prediction technique for coupled structural-acoustic radiation problems , 2002 .

[73]  Göran Sandberg,et al.  Domain decomposition in acoustic and structure–acoustic analysis , 2001 .

[74]  Qing Hua Qin,et al.  The Trefftz Finite and Boundary Element Method , 2000 .

[75]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[76]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[77]  L. Arnaud,et al.  A new computational method for structural vibrations in the medium-frequency range , 2000 .

[78]  P. Sas,et al.  An indirect Trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems , 1999 .

[79]  Wim Desmet,et al.  A Trefftz-based prediction technique for coupled structural acoustic radiation problems , 2001 .

[80]  Leszek Demkowicz,et al.  Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements , 1996 .

[81]  Philippe Bouillard,et al.  Dispersion and pollution of meshless solutions for the Helmholtz equation , 2000 .

[82]  Christian Soize A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy , 1992 .

[83]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[84]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[85]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[86]  Peter M. Pinsky,et al.  A multiscale finite element method for the Helmholtz equation , 1998 .

[87]  J. F. Doyle,et al.  Application of the Spectral Element Method to Acoustic Radiation , 2000 .

[88]  Wim Desmet,et al.  A novel prediction technique for coupled structural-acoustic radiation problems , 2000 .

[89]  Robert J. Bernhard,et al.  Vibrational Power Flow Analysis of Rods and Beams , 1988 .

[90]  O. C. Zienkiewicz,et al.  Trefftz method for Kirchhoff plate bending problems , 1993 .

[91]  Philippe Bouillard,et al.  3D Acoustic Analysis Using an Iterative Multilevel Meshless Method , 2002 .

[92]  K. Grosh Residual-based methods for fluid-loaded beams , 2001 .

[93]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[94]  P. Ladevèze,et al.  The variational theory of complex rays for the calculation of medium‐frequency vibrations , 2001 .

[95]  Christian Soize,et al.  Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization , 1997 .

[96]  H. Gourgeon,et al.  Boundary Methods. C-Complete Systems for the Biharmonic Equations , 1981 .

[97]  Antonio Carcaterra,et al.  Energy density equations and power flow in structures , 1995 .

[98]  J. K. Bennighof Implementing Automated Multi-Level Sub-structuring in Nastran Vibro-acoustic Analysis , 2001 .

[99]  Shin-Hyoung Kang,et al.  FREE VIBRATION ANALYSIS OF ARBITRARILY SHAPED PLATES WITH CLAMPED EDGES USING WAVE-TYPE FUNCTIONS , 2001 .

[100]  P. Barbone,et al.  THREE-DIMENSIONAL INFINITE ELEMENTS BASED ON A TREFFTZ FORMULATION , 2001 .

[101]  M. Malhotra EFFICIENT COMPUTATION OF MULTI-FREQUENCY FAR-FIELD SOLUTIONS OF THE HELMHOLTZ EQUATION USING PADÉ APPROXIMATION , 2000 .

[102]  Robin S. Langley,et al.  A wave intensity technique for the analysis of high frequency vibrations , 1992 .

[103]  T. Wu,et al.  An Energy Source Simulation Method to Predict Sound Radiation , 2001 .

[104]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[105]  B. Mace,et al.  Energy flow models from finite element analysis , 2000 .

[106]  P. Bouillard,et al.  Element-Free Galerkin solutions for Helmholtz problems: fomulation and numerical assessment of the pollution effect , 1998 .

[107]  A. Carcaterra,et al.  ON THE SPURIOUS SOLUTIONS IN COMPLEX ENVELOPE DISPLACEMENT ANALYSIS , 2001 .

[108]  Jan Mandel,et al.  The Finite Ray Element Method for the Helmholtz Equation of Scattering: First Numerical Experiments , 1997 .

[109]  W. Desmet A wave based prediction technique for coupled vibro-acoustic analysis , 1998 .

[110]  Wim Desmet,et al.  A wave based prediction technique for vibro-acoustic systems with cylindrical shell components , 1997 .

[111]  Małgorzata Stojek,et al.  LEAST-SQUARES TREFFTZ-TYPE ELEMENTS FOR THE HELMHOLTZ EQUATION , 1998 .

[112]  X. Zhao,et al.  Mid-Frequency Vibration Analysis of Systems Containing One Type of Energy Based on a Hybrid Finite Element Formulation , 2001 .

[113]  J. A. Teixeira de Freitas,et al.  Hybrid finite element formulations for elastodynamic analysis in the frequency domain , 1999 .

[114]  J. B. Fahnline,et al.  A method for computing acoustic fields based on the principle of wave superposition , 1989 .

[115]  Antonini Macedo,et al.  Two Level Finite Element Method and its Application to the Helmholtz Equation , 1997 .

[116]  Gee-Pinn James Too,et al.  The application of source methods in estimation of an interior sound field , 2002 .

[117]  A. Piacentini,et al.  An improved domain decomposition method for the 3D Helmholtz equation , 1998 .

[118]  Brian R. Mace,et al.  A LOCAL MODAL/PERTURBATIONAL METHOD FOR ESTIMATING FREQUENCY RESPONSE STATISTICS OF BUILT-UP STRUCTURES WITH UNCERTAIN PROPERTIES , 2001 .

[119]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[120]  Isaac Harari,et al.  High-Order Finite Element Methods for Acoustic Problems , 1997 .

[121]  Xi Zhao,et al.  A HYBRID FINITE ELEMENT FORMULATION FOR MID-FREQUENCY ANALYSIS OF SYSTEMS WITH EXCITATION APPLIED ON SHORT MEMBERS , 2000 .

[122]  P. Pinsky,et al.  Complex wave-number dispersion analysis of Galerkin and Galerkin least-squares methods for fluid-loaded plates , 1994 .

[123]  C. Farhat,et al.  The two-level FETI method. Part II: Extension to shell problems, parallel implementation and performance results , 1998 .

[124]  O. C. Zienkiewicz,et al.  Application of the Trefftz method in plane elasticity problems , 1990 .

[125]  Jeong Hoon Kang,et al.  FREE VIBRATION ANALYSIS OF MEMBRANES USING WAVE-TYPE BASE FUNCTIONS , 1996 .

[126]  Young-Seok Kang,et al.  VIBRATION ANALYSIS OF ARBITRARILY SHAPED MEMBRANES USING NON-DIMENSIONAL DYNAMIC INFLUENCE FUNCTION , 1999 .

[127]  O. C. Zienkiewicz,et al.  Solution of Helmholtz equation by Trefftz method , 1991 .

[128]  Lee,et al.  Eigenmode analysis of arbitrarily shaped two-dimensional cavities by the method of point-matching , 2000, The Journal of the Acoustical Society of America.

[129]  R. Langley,et al.  A hybrid method for the vibration analysis of complex structural-acoustic systems , 1999 .

[130]  Peter M. Pinsky,et al.  Parallel preconditioning based on h-hierarchical finite elements with application to acoustics , 1998 .

[131]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[132]  R. Freund,et al.  Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm , 1997 .