Contactless Manipulation of Soft Robots

In recent years, jointless soft robots have demonstrated various curvilinear motions unlike conventional robotic systems requiring complex mechanical joints and electrical design principles. The materials employed to construct soft robots are mainly programmable anisotropic polymeric materials to achieve contactless manipulation of miniaturized and lightweight soft robots through their anisotropic strain responsivity to external stimuli. Although reviews on soft actuators are extensive, those on untethered soft robots are scant. In this study, we focus on the recent progress in the manipulation of untethered soft robots upon receiving external stimuli such as magnetic fields, light, humidity, and organic solvents. For each external stimulus, we provide an overview of the working principles along with the characteristics of programmable anisotropic materials and polymeric composites used in soft robotic systems. In addition, potential applications for untethered soft robots are discussed based on the physicochemical properties of programmable anisotropic materials for the given external stimuli.

[1]  D. Wiersma,et al.  Light-Fueled Microscopic Walkers , 2015, Advanced materials.

[2]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[3]  S. Cai,et al.  Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. , 2018, ACS applied materials & interfaces.

[4]  Robert F. Shepherd,et al.  Electrolytic vascular systems for energy-dense robots , 2019, Nature.

[5]  T. Aida,et al.  An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling. , 2018, Angewandte Chemie.

[6]  Cedric P. Ambulo,et al.  Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators , 2018, Advanced Functional Materials.

[7]  D. Cappelleri,et al.  Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains , 2018, Micromachines.

[8]  P. Cladis Liquid Crystalline Elastomers as Artificial Muscles , 2005 .

[9]  L. Chu,et al.  Hydrogel Walkers with Electro-Driven Motility for Cargo Transport , 2015, Scientific Reports.

[10]  S. Hecht,et al.  Designing Molecular Photoswitches for Soft Materials Applications , 2019, Advanced Optical Materials.

[11]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[12]  Qiang Huang,et al.  A bioinspired multilegged soft millirobot that functions in both dry and wet conditions , 2018, Nature Communications.

[13]  Jeong Jae Wie,et al.  Photomotility of polymers , 2016, Nature Communications.

[14]  Kyu-Jin Cho,et al.  Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity , 2018, Science Robotics.

[15]  Shawn A. Chester,et al.  Printing ferromagnetic domains for untethered fast-transforming soft materials , 2018, Nature.

[16]  Jin-Kyu Lee,et al.  Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity , 2015, Scientific Reports.

[17]  Zhengguang Li,et al.  Polyelectrolyte multilayer films for building energetic walking devices. , 2011, Angewandte Chemie.

[18]  Salvador Pané,et al.  3D Printed Enzymatically Biodegradable Soft Helical Microswimmers , 2018, Advanced Functional Materials.

[19]  T. Aida,et al.  Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. , 2015, Nature materials.

[20]  K. M. Lee,et al.  Impact of Backbone Rigidity on the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides , 2014 .

[21]  S. Tumański Handbook of Magnetic Measurements , 2011 .

[22]  Hao Zeng,et al.  Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities , 2015 .

[23]  Howon Lee,et al.  First jump of microgel; actuation speed enhancement by elastic instability , 2010, 1008.4078.

[24]  Elisabetta A. Matsumoto,et al.  Biomimetic 4 D printing , 2016 .

[25]  T. Ikeda,et al.  Photomobile polymer materials—various three-dimensional movements , 2009 .

[26]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[27]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[28]  Ryan R. Kohlmeyer,et al.  Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. , 2013, Angewandte Chemie.

[29]  Haifeng Yu,et al.  A Light-Activated Polymer Composite Enables On-Demand Photocontrolled Motion: Transportation at the Liquid/Air Interface. , 2019, Angewandte Chemie.

[30]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[31]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[32]  D. Jiang,et al.  Enhancement of magnetic properties in hard/soft CoFe2O4/Fe3O4 nanocomposites , 2016 .

[33]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[34]  Y. Kageyama Light‐Powered Self‐Sustainable Macroscopic Motion for the Active Locomotion of Materials , 2019, ChemPhotoChem.

[35]  Chihyung Ahn,et al.  Bioinspired Design of Light‐Powered Crawling, Squeezing, and Jumping Untethered Soft Robot , 2019, Advanced Materials Technologies.

[36]  Cedric P. Ambulo,et al.  Four-dimensional Printing of Liquid Crystal Elastomers. , 2017, ACS applied materials & interfaces.

[37]  M. Frisk,et al.  Biomimetic soft multifunctional miniature aquabots. , 2008, Small.

[38]  Christos Bergeles,et al.  Characterizing the swimming properties of artificial bacterial flagella. , 2009, Nano letters.

[39]  R. Victora,et al.  Composite media for perpendicular magnetic recording , 2005, IEEE Transactions on Magnetics.

[40]  Qi Zhou,et al.  Multifunctional biohybrid magnetite microrobots for imaging-guided therapy , 2017, Science Robotics.

[41]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[42]  Brian S. Wherrett,et al.  Anomalous optical Freedericksz transition in an absorbing liquid crystal , 1990 .

[43]  Masuki Kawamoto,et al.  An autonomous actuator driven by fluctuations in ambient humidity. , 2016, Nature materials.

[44]  Salvador Pané,et al.  Soft micromachines with programmable motility and morphology , 2016, Nature Communications.

[45]  Suiyang Khoo,et al.  Development and analysis of a 3D printed hydrogel soft actuator , 2017 .

[46]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[47]  Owies M. Wani,et al.  Light-Driven, Caterpillar-Inspired Miniature Inching Robot. , 2018, Macromolecular rapid communications.

[48]  Jun Fu,et al.  Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. , 2018, ACS applied materials & interfaces.

[49]  Shengqiang Cai,et al.  Light or Thermally Powered Autonomous Rolling of an Elastomer Rod. , 2018, ACS applied materials & interfaces.

[50]  Chaobin He,et al.  The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. , 2004, Biomaterials.

[51]  Yue Zhao,et al.  Shining Light on Liquid Crystal Polymer Networks: Preparing, Reconfiguring, and Driving Soft Actuators , 2019, Advanced Optical Materials.

[52]  Saeid Nahavandi,et al.  Control-Oriented Modelling of a 3D-Printed Soft Actuator , 2018, Materials.

[53]  Malav S. Desai,et al.  Light-controlled graphene-elastin composite hydrogel actuators. , 2013, Nano letters.

[54]  D. Broer,et al.  Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. , 2014, Angewandte Chemie.

[55]  E. W. Meijer,et al.  Making waves in a photoactive polymer film , 2017, Nature.

[56]  J. Lewis,et al.  3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order , 2018, Advanced materials.

[57]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[58]  Eric E. Fullerton,et al.  Anisotropy dependence of irreversible switching in Fe∕SmCo and FeNi∕FePt exchange spring magnet films , 2005 .

[59]  Howon Lee,et al.  Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. , 2018, ACS applied materials & interfaces.

[60]  Yue Zhao,et al.  Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion. , 2019, Angewandte Chemie.

[61]  E. Palleau,et al.  Electro-actuated hydrogel walkers with dual responsive legs. , 2014, Soft matter.

[62]  Yong Liu,et al.  Synthesis and magnetic properties of hard magnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology , 2011 .

[63]  T. White,et al.  Layered liquid crystal elastomer actuators , 2018, Nature Communications.

[64]  Nathalie Katsonis,et al.  Life-like motion driven by artificial molecular machines , 2019, Nature Reviews Chemistry.

[65]  Hao Zeng,et al.  Light‐Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale , 2016 .

[66]  Chia-Hung Chen,et al.  Gradient Porous Elastic Hydrogels with Shape‐Memory Property and Anisotropic Responses for Programmable Locomotion , 2015 .

[67]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[68]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[69]  T. White,et al.  Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT) , 2014 .

[70]  Yue Zhao,et al.  Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators , 2017, Advanced materials.

[71]  S. Naseem,et al.  Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites , 2013 .

[72]  T. White,et al.  Voxelated liquid crystal elastomers , 2015, Science.

[73]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[74]  E. Bukusoglu,et al.  Liquid Crystal Templates Combined with Photolithography Enable Synthesis of Chiral Twisted Polymeric Microparticles. , 2019, Macromolecular rapid communications.

[75]  D. Wiersma,et al.  Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials , 2018, Advanced materials.

[76]  Howon Lee,et al.  Programming magnetic anisotropy in polymeric microactuators. , 2011, Nature materials.

[77]  Sukyoung Won,et al.  Magnetomotility of untethered helical soft robots , 2019, RSC advances.

[78]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[79]  Stefan Disch,et al.  Nematic elastomers beyond the critical point , 1994 .

[80]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[81]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[82]  Suiyang Khoo,et al.  Rigid elements dynamics modeling of a 3D printed soft actuator , 2018, Smart Materials and Structures.

[83]  A. Ghatak,et al.  How to make a cylinder roll uphill , 2012, 1510.04966.

[84]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[85]  D. Wiersma,et al.  Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. , 2016, Nature materials.