GeneSPIDER - gene regulatory network inference benchmarking with controlled network and data properties.
暂无分享,去创建一个
Torbjörn E. M. Nordling | Erik L L Sonnhammer | Andreas Tjärnberg | Torbjörn E M Nordling | Matthew Studham | Daniel C Morgan | E. Sonnhammer | Andreas Tjärnberg | D. Morgan | Matthew Studham | T. Nordling
[1] Mark D. McDonnell,et al. Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists , 2011, Front. Comput. Neurosci..
[2] Sean C. Warnick,et al. Robust dynamical network structure reconstruction , 2011, Autom..
[3] Michael Hecker,et al. Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..
[4] Julio Collado-Vides,et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..
[5] N. Lytkin,et al. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. , 2011, Genomics.
[6] Christian L. Müller,et al. Sparse and Compositionally Robust Inference of Microbial Ecological Networks , 2014, PLoS Comput. Biol..
[7] Kathleen Marchal,et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.
[8] Albert-László Barabási,et al. Statistical mechanics of complex networks , 2001, ArXiv.
[9] B. Bollobás. The evolution of random graphs , 1984 .
[10] Catarina Costa,et al. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae , 2013, Nucleic Acids Res..
[11] Ralf Herwig,et al. Reverse Engineering of Gene Regulatory Networks: A Comparative Study , 2009, EURASIP J. Bioinform. Syst. Biol..
[12] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[13] P. Erdos,et al. On the evolution of random graphs , 1984 .
[14] Simon Rogers,et al. A Bayesian regression approach to the inference of regulatory networks from gene expression data , 2005, Bioinform..
[15] Stephen P. Boyd,et al. Inferring stable genetic networks from steady-state data , 2011, Autom..
[16] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[17] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[18] Ralf Herwig,et al. GeNGe: systematic generation of gene regulatory networks , 2009, Bioinform..
[19] J. Collins,et al. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.
[20] Torbjörn E. M. Nordling,et al. Interampatteness - a generic property of biochemical networks. , 2009, IET systems biology.
[21] Christopher A. Penfold,et al. How to infer gene networks from expression profiles, revisited , 2011, Interface Focus.
[22] Claudio Cobelli,et al. A Gene Network Simulator to Assess Reverse Engineering Algorithms , 2009, Annals of the New York Academy of Sciences.
[23] D. di Bernardo,et al. How to infer gene networks from expression profiles , 2007, Molecular systems biology.
[24] Philippe Salembier,et al. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference , 2015, BMC Bioinformatics.
[25] Erik L. L. Sonnhammer,et al. Optimal Sparsity Criteria for Network Inference , 2013, J. Comput. Biol..
[26] Dario Floreano,et al. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..
[27] Diogo M. Camacho,et al. Wisdom of crowds for robust gene network inference , 2012, Nature Methods.
[28] Torbjörn E. M. Nordling,et al. Robust Inference of Gene Regulatory Networks , 2012, ICONS 2012.
[29] Chris Wiggins,et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.
[30] Torbjörn E. M. Nordling,et al. Avoiding pitfalls in L1-regularised inference of gene networks. , 2015, Molecular bioSystems.
[31] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.