Interfacial Dzyaloshinskii-Moriya Interaction: Effect of 5d Band Filling and Correlation with Spin Mixing Conductance.

The Dzyaloshinskii-Moriya interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^{3}-5d^{10}) of the HM element in HM/FM (FM=CoFeB,Co)/MgO multilayer thin films. DMI is quantitatively evaluated by measuring asymmetric spin wave dispersion using Brillouin light scattering. Sign reversal and 20 times modification of the DMI coefficient D have been measured as the 5d HM element is varied. The chemical trend can be qualitatively understood by considering the 5d and 3d bands alignment at the HM/FM interface and the subsequent orbital hybridization around the Fermi level. Furthermore, a correlation is observed between DMI and effective spin mixing conductance at the HM/FM interfaces. Our results provide new insights into the interfacial DMI for designing future spintronic devices.

[1]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[2]  A. Stashkevich,et al.  Making the Dzyaloshinskii-Moriya interaction visible , 2017, 1706.02258.

[3]  Kang L. Wang,et al.  Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface. , 2017, Physical review letters.

[4]  T. Hase,et al.  The interfacial nature of proximity-induced magnetism and the Dzyaloshinskii-Moriya interaction at the Pt/Co interface , 2017, Scientific Reports.

[5]  C. You,et al.  Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magneto-optical Kerr effect , 2017 .

[6]  M. Schweizer,et al.  Lack of correlation between the spin-mixing conductance and the inverse spin Hall effect generated voltages in CoFeB/Pt and CoFeB/Ta bilayers , 2017, 1701.09110.

[7]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[8]  Kang L. Wang,et al.  Spin-torque ferromagnetic resonance measurements utilizing spin Hall magnetoresistance in W/Co40Fe40B20/MgO structures , 2016 .

[9]  Kang L. Wang,et al.  Interfacial control of Dzyaloshinskii-Moriya interaction in heavy metal/ferromagnetic metal thin film heterostructures , 2016, 1611.01577.

[10]  T. Silva,et al.  Inductive detection of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers , 2016, 1611.05798.

[11]  D. Pierce,et al.  Simultaneous control of the Dzyaloshinskii-Moriya interaction and magnetic anisotropy in nanomagnetic trilayers. , 2016, Physical review letters.

[12]  F. Bechstedt,et al.  Hund's Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d-5d Interfaces. , 2016, Physical review letters.

[13]  Hyunsoo Yang,et al.  Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers , 2016, Scientific Reports.

[14]  Sourav K. Sahoo,et al.  Direct Observation of Interfacial Dzyaloshinskii-Moriya Interaction from Asymmetric Spin-wave Propagation in W/CoFeB/SiO2 Heterostructures Down to Sub-nanometer CoFeB Thickness , 2016, Scientific Reports.

[15]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[16]  C. Marrows,et al.  Effect of interfacial intermixing on the Dzyaloshinskii-Moriya interaction in Pt/Co/Pt , 2016, 1608.03826.

[17]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[18]  J. Tetienne,et al.  Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X/CoFeB/MgO heterostructures with a scanning-NV magnetometer , 2016, 1605.07044.

[19]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[20]  J. Åkerman,et al.  Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeB Films: Effect of the Heavy-Metal Thickness. , 2016, Physical review letters.

[21]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[22]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[23]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[24]  C. You,et al.  Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface , 2016, 1601.02210.

[25]  M. Kostylev,et al.  Frequency nonreciprocity of surface spin wave in permalloy thin films , 2015, 1511.09351.

[26]  C. You,et al.  Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer , 2015 .

[27]  T. Silva,et al.  Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films , 2015, Nature Physics.

[28]  D. Lacour,et al.  Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction , 2015 .

[29]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[30]  B. Leven,et al.  The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems , 2015 .

[31]  T. Devolder,et al.  Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy , 2015, 1503.00372.

[32]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[33]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[34]  Shiming Zhou,et al.  Role of antisite disorder on intrinsic Gilbert damping in L 1 0 FePt films , 2015 .

[35]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[36]  Hyunsoo Yang,et al.  Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film , 2014, 1412.3907.

[37]  Hyunsoo Yang,et al.  Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. , 2014, Physical review letters.

[38]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[39]  Yi Liu,et al.  Interface enhancement of Gilbert damping from first principles. , 2014, Physical review letters.

[40]  Y. Mokrousov,et al.  Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d-5d zigzag chains: Tight-binding model and ab initio calculations , 2014, 1406.0294.

[41]  S. Parkin,et al.  Chiral spin torque arising from proximity-induced magnetization , 2014, Nature Communications.

[42]  T. Miyazaki,et al.  Gilbert damping constants of Ta/CoFeB/MgO(Ta) thin films measured by optical detection of precessional magnetization dynamics , 2014 .

[43]  Byong‐Guk Park,et al.  Ferromagnetic resonance spin pumping in CoFeB with highly resistive non-magnetic electrodes , 2014, 1404.1993.

[44]  H. Ohno,et al.  Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers , 2014, Nature Communications.

[45]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[46]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[47]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[48]  Y. Tokura,et al.  Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.

[49]  M. Stiles,et al.  Chirality from interfacial spin-orbit coupling effects in magnetic bilayers. , 2013, Physical review letters.

[50]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[51]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[52]  Shuigeng Zhou,et al.  Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and Ab initio calculations. , 2013, Physical review letters.

[53]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[54]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[55]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[56]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[57]  M D Stiles,et al.  Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. , 2007, Physical review letters.

[58]  R. Arias,et al.  Extrinsic contributions to the ferromagnetic resonance response of ultrathin films , 1999 .

[59]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[60]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .