Global Nash–Kuiper theorem for compact manifolds
暂无分享,去创建一个
[1] Camillo De Lellis,et al. C1, isometric embeddings of polar caps , 2020 .
[2] H. Olbermann,et al. Coarea formulae and chain rules for the Jacobian determinant in fractional Sobolev spaces , 2019, Journal of Functional Analysis.
[3] K. Chandrasekran,et al. Geometric , 2019, Encyclopedic Dictionary of Archaeology.
[4] V. Vicol,et al. Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.
[5] Vlad Vicol,et al. Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.
[6] M. Gromov. Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .
[7] Camillo De Lellis,et al. High dimensionality and h-principle in PDE , 2016, 1609.03180.
[8] Philip Isett,et al. A Proof of Onsager's Conjecture , 2016, 1608.08301.
[9] L. Székelyhidi,et al. Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations , 2016, 1603.09714.
[10] K. Astala,et al. Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian , 2015, 1511.08370.
[11] V. Vicol,et al. Hölder Continuous Solutions of Active Scalar Equations , 2015, Annals of PDE.
[12] M. Lewicka,et al. Convex integration for the Monge–Ampère equation in two dimensions , 2015, 1508.01362.
[13] N. Hungerbühler,et al. The One-Sided Isometric Extension Problem , 2014, 1410.0232.
[14] V. Vicol,et al. Hölder Continuous Solutions of Active Scalar Equations , 2014, 1405.7656.
[15] S. Daneri. Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations , 2014, Communications in Mathematical Physics.
[16] Ondrej Kreml,et al. Global Ill‐Posedness of the Isentropic System of Gas Dynamics , 2013, 1304.0123.
[17] S. Daneri. Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations , 2013, 1302.0988.
[18] Camillo De Lellis,et al. Dissipative Euler Flows and Onsager's Conjecture , 2012, 1205.3626.
[19] Camillo De Lellis,et al. Dissipative continuous Euler flows , 2012, 1202.1751.
[20] Camillo De Lellis,et al. The Euler equations as a differential inclusion , 2007, math/0702079.
[21] M. Gromov,et al. Partial Differential Relations , 1986 .
[22] M. Gromov,et al. CONVEX INTEGRATION OF DIFFERENTIAL RELATIONS. I , 1973 .
[23] Shiing-Shen Chern,et al. An elementary proof of the existence of isothermal parameters on a surface , 1955 .
[24] J. Nash. C 1 Isometric Imbeddings , 1954 .
[25] G. Herglotz. Über die starrheit der eiflächen , 1943 .
[26] Camillo De Lellis,et al. A NASH-KUIPER THEOREM FOR C1,/5−δ IMMERSIONS OF SURFACES IN 3 DIMENSIONS , 2016 .
[27] Camillo De Lellis,et al. Anomalous dissipation for 1/5-Hölder Euler flows , 2015 .
[28] Sergio Conti,et al. h -Principle and Rigidity for C 1, α Isometric Embeddings , 2012 .
[29] R. Greene,et al. Relative isometric embeddings of Riemannian manifolds , 2011 .
[30] N. Kuiper,et al. On C1-isometric imbeddings. II , 1955 .