Global Nash–Kuiper theorem for compact manifolds

We obtain global extensions of the celebrated Nash-Kuiper theorem for $C^{1,\theta}$ isometric immersions of compact manifolds with optimal Holder exponent. In particular for the Weyl problem of isometrically embedding a convex compact surface in 3-space, we show that the Nash-Kuiper non-rigidity prevails upto exponent $\theta<1/5$. This extends previous results on embedding 2-discs as well as higher dimensional analogues.

[1]  Camillo De Lellis,et al.  C1, isometric embeddings of polar caps , 2020 .

[2]  H. Olbermann,et al.  Coarea formulae and chain rules for the Jacobian determinant in fractional Sobolev spaces , 2019, Journal of Functional Analysis.

[3]  K. Chandrasekran,et al.  Geometric , 2019, Encyclopedic Dictionary of Archaeology.

[4]  V. Vicol,et al.  Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.

[5]  Vlad Vicol,et al.  Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.

[6]  M. Gromov Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .

[7]  Camillo De Lellis,et al.  High dimensionality and h-principle in PDE , 2016, 1609.03180.

[8]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[9]  L. Székelyhidi,et al.  Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations , 2016, 1603.09714.

[10]  K. Astala,et al.  Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian , 2015, 1511.08370.

[11]  V. Vicol,et al.  Hölder Continuous Solutions of Active Scalar Equations , 2015, Annals of PDE.

[12]  M. Lewicka,et al.  Convex integration for the Monge–Ampère equation in two dimensions , 2015, 1508.01362.

[13]  N. Hungerbühler,et al.  The One-Sided Isometric Extension Problem , 2014, 1410.0232.

[14]  V. Vicol,et al.  Hölder Continuous Solutions of Active Scalar Equations , 2014, 1405.7656.

[15]  S. Daneri Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations , 2014, Communications in Mathematical Physics.

[16]  Ondrej Kreml,et al.  Global Ill‐Posedness of the Isentropic System of Gas Dynamics , 2013, 1304.0123.

[17]  S. Daneri Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations , 2013, 1302.0988.

[18]  Camillo De Lellis,et al.  Dissipative Euler Flows and Onsager's Conjecture , 2012, 1205.3626.

[19]  Camillo De Lellis,et al.  Dissipative continuous Euler flows , 2012, 1202.1751.

[20]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007, math/0702079.

[21]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[22]  M. Gromov,et al.  CONVEX INTEGRATION OF DIFFERENTIAL RELATIONS. I , 1973 .

[23]  Shiing-Shen Chern,et al.  An elementary proof of the existence of isothermal parameters on a surface , 1955 .

[24]  J. Nash C 1 Isometric Imbeddings , 1954 .

[25]  G. Herglotz Über die starrheit der eiflächen , 1943 .

[26]  Camillo De Lellis,et al.  A NASH-KUIPER THEOREM FOR C1,/5−δ IMMERSIONS OF SURFACES IN 3 DIMENSIONS , 2016 .

[27]  Camillo De Lellis,et al.  Anomalous dissipation for 1/5-Hölder Euler flows , 2015 .

[28]  Sergio Conti,et al.  h -Principle and Rigidity for C 1, α Isometric Embeddings , 2012 .

[29]  R. Greene,et al.  Relative isometric embeddings of Riemannian manifolds , 2011 .

[30]  N. Kuiper,et al.  On C1-isometric imbeddings. II , 1955 .