Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: Indoor experimental tests and multi-objective optimization

[1]  S. Gorjian,et al.  The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations , 2021 .

[2]  G. Najafi,et al.  Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems , 2021 .

[3]  Fausto Bontempo Scavo,et al.  Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems , 2021 .

[4]  A. Shukla,et al.  A review on recent advancements in performance enhancement techniques for low-temperature solar collectors , 2020 .

[5]  Han Zhai,et al.  Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance , 2020 .

[6]  Wei-Mon Yan,et al.  Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink , 2020, Energy Conversion and Management.

[7]  N. Tamaldin,et al.  Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system , 2020 .

[8]  S. Gorjian,et al.  Solar photovoltaic thermal (PVT) module technologies , 2020 .

[9]  A. Shukla,et al.  On-farm applications of solar PV systems , 2020 .

[10]  Adolfo Palombo,et al.  Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype , 2019, Energy.

[11]  Ludger Eltrop,et al.  Solar photovoltaic power generation in Iran: Development, policies, and barriers , 2019, Renewable and Sustainable Energy Reviews.

[12]  Qiang Li,et al.  Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials , 2019, Energy.

[13]  M. H. Ruslan,et al.  A performance and technoeconomic study of different geometrical designs of compact single-pass cross-matrix solar air collector with square-tube absorbers , 2019, Solar Energy.

[14]  Hameed B. Mahood,et al.  Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM , 2019, Solar Energy.

[15]  Lasse Rosendahl,et al.  Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration , 2018, Energy.

[16]  Bahman Shabani,et al.  Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study , 2018 .

[17]  Mohammad Passandideh-Fard,et al.  Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material , 2018 .

[18]  D. Wen,et al.  An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application , 2017 .

[19]  Daniel Champier,et al.  Thermoelectric generators: A review of applications , 2017 .

[20]  Qiang Li,et al.  Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials , 2017 .

[21]  Mohsen Ghazikhani,et al.  Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems , 2017 .

[22]  D. Jing,et al.  Investigation of the performance of photovoltaic/thermal system by a coupled TRNSYS and CFD simulation , 2017 .

[23]  Thomas Søndergaard,et al.  Design and optimization of spectral beamsplitter for hybrid thermoelectric-photovoltaic concentrated solar energy devices , 2016 .

[24]  Husam Abdulrasool Hasan,et al.  Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions , 2016 .

[25]  Fathollah Pourfayaz,et al.  Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system , 2016 .

[26]  Evangelos Hristoforou,et al.  Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system , 2016 .

[27]  Ali Jabari Moghadam,et al.  Experimental investigation of a PVT system performance using nano ferrofluids , 2015 .

[28]  Frédéric Lesage,et al.  Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system , 2015 .

[29]  Yongliang Li,et al.  Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system , 2014 .

[30]  K. Woodbury,et al.  Optimization of a cooling system based on Peltier effect for photovoltaic cells , 2013 .

[31]  Wei Zhu,et al.  Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design , 2013 .

[32]  Zhifeng Wang,et al.  Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system , 2012 .

[33]  E. A. Chávez-Urbiola,et al.  Solar hybrid systems with thermoelectric generators , 2012 .

[34]  Li Han,et al.  A novel high-performance photovoltaic–thermoelectric hybrid device , 2011 .

[35]  Ho Chang,et al.  Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators , 2011 .

[36]  K. T. Chau,et al.  Design and Implementation of a New Thermoelectric-Photovoltaic Hybrid Energy System for Hybrid Electric Vehicles , 2011 .

[37]  H. Yin,et al.  Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization , 2011, IEEE Transactions on Energy Conversion.

[38]  K. T. Chau,et al.  An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking , 2011 .

[39]  Y. Tripanagnostopoulos,et al.  Performance improvement of PV/T solar collectors with natural air flow operation , 2008 .

[40]  Hongxia Xi,et al.  Development and applications of solar-based thermoelectric technologies , 2007 .

[41]  L. P. Bulat,et al.  Thermal-photovoltaic solar hybrid system for efficient solar energy conversion , 2006 .

[42]  D. L. Evans,et al.  Simplified method for predicting photovoltaic array output , 1980 .

[43]  T. Seebeck,et al.  Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur‐Differenz , 1826 .