The direct integer factorization approach to the Crochiere and Rabiner multistage FIR designs for multirate systems
暂无分享,去创建一个
[1] William M. Campbell,et al. Optimal design of multirate systems with constraints , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[2] S. Biyiksiz,et al. Multirate digital signal processing , 1985, Proceedings of the IEEE.
[3] Lawrence R. Rabiner,et al. Recent developments in the design and implementation of digital decimators, interpolators, and narrow band filters , 1976, ICASSP.
[4] James Wiegold,et al. Abstract and linear algebra , 1973 .
[5] L. Rabiner,et al. Multirate digital signal processing: Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07362, 1983, 411 pp., ISBN 0-13-605162-6 , 1983 .
[6] L. Rabiner,et al. Further considerations in the design of decimators and interpolators , 1976 .
[7] James A. Anderson,et al. Discrete Mathematics with Combinatorics , 2000 .
[8] O. Herrmann,et al. Practical design rules for optimum finite impulse response low-pass digital filters , 1973 .
[9] L. Rabiner,et al. A novel implementation for narrow-band FIR digital filters , 1975 .
[10] T. Saramaki,et al. Multistage, multirate FIR filter structures for narrow transition-band filters , 1990, IEEE International Symposium on Circuits and Systems.
[11] Jan P. Allebach,et al. On determining optimum multirate structures for narrow-band FIR filters , 1988, IEEE Trans. Acoust. Speech Signal Process..
[12] David B. Chester. A generalized rate change filter architecture , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[13] Lawrence R. Ubiner. Optimum FIR Digital Filter Implementations for Decimation, Interpolation, and Narrow-Band Filtering , 1975 .
[14] Kenneth P. Bogart,et al. Introductory Combinatorics , 1977 .