Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations

Resonance period is a key parameter in the seismic design of a structure, thus dynamic parameters of buildings in Beirut (Lebanon) were investigated based on ambient vibration method for risk and vulnerability assessment. Lebanon is facing high seismic hazard due to its major faults, combined to a high seismic risk caused by dense urbanization in addition to the lack of a seismic design code implementation. For this study, ambient vibration recordings have been performed on 330 RC buildings, period parameters extracted and statistically analyzed to identify correlations with physical building parameters (height, horizontal dimensions, age) and site characteristics (rock sites or soft sites). The study shows that (1) the building height or number of floors (N) is the primary statistically robust parameter for the estimation of the fundamental period T; (2) the correlation between T and N is linear and site dependent: T ≈ N/23 for rock sites and N/18 for soft sites; (3) the measured damping is inversely proportional to the period: the taller the building the lower is the damping; (4) a significant overestimation of the period exists in current building codes. However part of the large discrepancy with building code recommendations may be due to the very low level of loading.

[1]  Maria I. Todorovska,et al.  Soil-Structure System Identification of Millikan Library North–South Response during Four Earthquakes (1970–2002): What Caused the Observed Wandering of the System Frequencies? , 2009 .

[2]  Angelo Masi,et al.  Analysis of RC Building Dynamic Response and Soil-Building Resonance Based on Data Recorded during a Damaging Earthquake (Molise, Italy, 2002) , 2004 .

[3]  Young-Soo Chun,et al.  Experimental formula for the fundamental period of RC buildings with shear-wall dominant systems , 2000 .

[4]  Gian Michele,et al.  Direct Displacement-Based Seismic Design of Structures , 2007 .

[5]  Estimate of fundamental period of reinforced concrete buildings : code provisions vs . experimental measures in Victoria and Vancouver ( BC , Canada ) , 2022 .

[6]  Jean-Luc Chatelain,et al.  Retrofitting and Strengthening Evaluation from Stiffness Variations of a Damaged Building from Ambient Vibration Recordings , 2009 .

[7]  M. Asten Geological control on the three-component spectra of Rayleigh-wave microseisms , 1978 .

[8]  T. Ohmachi,et al.  Ground Motion Characteristics Estimated from Spectral Ratio between Horizontal and Verticcl Components of Mietremors. , 1997 .

[9]  Dean S. Carder,et al.  Observed vibrations of bridges , 1937 .

[10]  Tso-Chien Pan,et al.  Empirical relationships between natural vibration period and height of buildings in Singapore , 2014 .

[11]  E. Papadimitriou,et al.  Seismic zonation of the Dead Sea Transform Fault area , 2000 .

[12]  Philippe Guéguen,et al.  CityShark: A User-friendly Instrument Dedicated to Ambient Noise (Microtremor) Recording for Site and Building Response Studies , 2000 .

[13]  Yasutaka IRIE,et al.  DYNAMIC CHARACTERISTICS OF A R / C BUILDING OF FIVE STORIES BASED ON MICROTREMOR MEASUREMENTS AND EARTHQUAKE OBSERVATIONS , 1999 .

[14]  Carvalho,et al.  Designers' Guide to EN 1998-1 and 1998-5. Eurocode 8: Design Provisions for Earthquake Resistant Structures , 2005 .

[15]  Rui Pinho,et al.  Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis , 2009 .

[16]  Rui Pinho,et al.  PERIOD-HEIGHT RELATIONSHIP FOR EXISTING EUROPEAN REINFORCED CONCRETE BUILDINGS , 2004 .

[17]  R. Sharpe Tentative Provisions for the Development of Seismic Regulations for Buildings , 1994 .

[18]  Maria I. Todorovska,et al.  Seismic Interferometry of a Soil-Structure Interaction Model with Coupled Horizontal and Rocking Response , 2009 .

[19]  Michael W. Asten,et al.  Array estimators and the use of microseisms for reconnaissance of sedimentary basins , 1984 .

[20]  Jean-Luc Chatelain,et al.  Establishing Empirical Period Formula for RC Buildings in Lima, Peru: Evidence for the Impact of Both the 1974 Lima Earthquake and the Application of the Peruvian Seismic Code on High‐Rise Buildings , 2014 .

[21]  Carlos Sousa Oliveira,et al.  Fundamental periods of vibration of RC buildings in Portugal from in-situ experimental and numerical techniques , 2010 .

[22]  George D. Hatzigeorgiou,et al.  Evaluation of fundamental period of low‐rise and mid‐rise reinforced concrete buildings , 2013 .

[23]  Maria Rosaria Gallipoli,et al.  A critical review of 10 years of microtremor HVSR technique , 2001 .

[24]  C. Voisin,et al.  The shear wave velocity structure of the heterogeneous alluvial plain of Beirut (Lebanon): combined analysis of geophysical and geotechnical data , 2014 .

[25]  T. Enomoto,et al.  Analysis of the weightiness of site effects on reinforced concrete (RC) building seismic behaviour: The Adra town example (SE Spain) , 2007 .

[26]  S. Lagomarsino,et al.  Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings , 2006 .

[27]  Mohammed Naboussi Farsi Identification des structures de génie civil à partir de leurs réponses vibratoires : vulnérabilité du bati existant , 1996 .

[29]  Clotaire Michel,et al.  Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France , 2010 .

[30]  Clotaire Michel,et al.  Vulnérabilité Sismique de l'échelle du bâtiment à celle de la ville - Apport des techniques expérimentales in situ - Application à Grenoble , 2008 .

[31]  H. J. Stumpf,et al.  Transient Response of a Dynamic System Under Random Excitation , 1961 .

[32]  F. Gomez,et al.  Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon , 2003 .

[33]  Clotaire Michel,et al.  Time-Frequency Analysis of Small Frequency Variations in Civil Engineering Structures Under Weak and Strong Motions Using a Reassignment Method , 2010 .

[34]  Y. Klinger,et al.  Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake , 2007 .

[35]  Pierre-Yves Bard,et al.  The Analysis of Long‐Term Frequency and Damping Wandering in Buildings Using the Random Decrement Technique , 2013, 1303.2642.

[36]  Y Nakamura,et al.  A METHOD FOR DYNAMIC CHARACTERISTICS ESTIMATION OF SUBSURFACE USING MICROTREMOR ON THE GROUND SURFACE , 1989 .

[37]  U. S. Coast United States Earthquakes, 1938 , 1933 .

[38]  A. G. Brady,et al.  Natural Periods of Vibration of Buildings , 1963 .

[39]  David A. Nix,et al.  Vibration–based structural damage identification , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Pierre-Yves BARD,et al.  DYNAMIC PROPERTIES OF BEIRUT BUILDINGS : INSTRUMENTAL RESULTS FROM AMBIENT VIBRATIONS , 2014 .

[41]  Ezio Faccioli,et al.  A STUDY OF SITE EFFECTS AND SEISMIC RESPONSE OF AN INSTRUMENTED BUILDING IN MEXICO CITY , 1998 .

[42]  Thomas H. Heaton,et al.  The Observed Wander of the Natural Frequencies in a Structure , 2006 .

[43]  D. Herak,et al.  Empirical estimates of dynamic parameters on a large set of European buildings , 2010 .

[44]  Musa Resheidat,et al.  Ambient vibration testing of low and medium rise infilled RC frame buildings in Jordan , 2014 .

[45]  F. Cotton,et al.  The nature of noise wavefield and its applications for site effects studies A literature review , 2006 .

[46]  F. Dunand,et al.  Utilisation du bruit de fond pour l'analyse des dommages des bâtiments de Boumerdes suite au séisme du 21 mai 2003 , 2004 .

[47]  J. E. Luco,et al.  On the apparent change in dynamic behavior of a nine-story reinforced concrete building , 1987 .

[48]  Pierre-Yves Bard,et al.  Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique , 1994 .

[49]  Y. Klinger,et al.  12,000-Year-Long Record of 10 to 13 Paleoearthquakes on the Yammoûneh Fault, Levant Fault System, Lebanon , 2007 .

[50]  Masayoshi Matsubara,et al.  DEVELOPMENT OF PORTABLE MEASUREMENT SYSTEM FOR AMBIENT VIBRATION TEST OF BUILDING , 1987 .

[51]  Marco Vona,et al.  Empirical estimate of fundamental frequencies and damping for Italian buildings , 2009 .

[52]  M. Navarro,et al.  Changes in dynamic characteristics of Lorca RC buildings from pre- and post-earthquake ambient vibration data , 2014, Bulletin of Earthquake Engineering.

[53]  Kuvvet Atakan,et al.  Influence of instruments on the H/V spectral ratios of ambient vibrations , 2008 .

[54]  Yukio Tamura,et al.  Damping Evaluation Using Full-Scale Data of Buildings in Japan , 2003 .

[55]  Mihailo D. Trifunac,et al.  Comparisons between ambient and forced vibration experiments , 1972 .

[56]  Marco Vona,et al.  Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings , 2013 .

[57]  François Dunand Pertinence du bruit de fond sismique pour la caractérisation dynamique et l'aide au diagnostic sismique des structures de génie civil , 2005 .

[58]  Naoki Satake,et al.  Evaluation of vibration properties of high-rise steel buildings using data of vibration tests and earthquake observations , 1996 .

[59]  M. Celebi Comparison of damping in buildings under low-amplitude and strong motions , 1996 .

[60]  Marc Wathelet,et al.  An improved neighborhood algorithm: Parameter conditions and dynamic scaling , 2008 .

[61]  Philippe Gueguen Interaction sismique entre le sol et le bâti : de l'interaction sol-structure à l'interaction site-ville , 2000 .

[62]  N. Theodulidis,et al.  Empirical evaluation of microtremor H/V spectral ratio , 2008 .

[63]  Pierre-Yves Bard,et al.  Estimation des périodes propres de bâtiments et vulnérabilité du bâti existant dans l'agglomération de Grenoble , 2004 .

[64]  Li-Ling Hong,et al.  Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan , 2000 .

[65]  Sergio Lagomarsino,et al.  Forecast models for damping and vibration periods of buildings , 1993 .

[66]  James L. Beck,et al.  Structural identification of JPL Building 180 using optimally synchronized earthquake records , 1983 .

[67]  Tom Schanz,et al.  Coupled Site and Soil-Structure Interaction Effects with Application to Seismic Risk Mitigation , 2009 .

[68]  Ali Kocak,et al.  Estimation of the Fundamental Vibration Period of Existing RC Buildings in Turkey Utilizing Ambient Vibration Records , 2008 .