Erratum: Resolving the age bimodality of galaxy stellar populations on kpc scales

Galaxies in the local Universe are known to follow bimodal distributions in the global stellar population properties. We analyse the distribution of the local average stellar population ages of 654 053 sub-galactic regions resolved on ˜1 kpc scales in a volume-corrected sample of 394 galaxies, drawn from the Calar Alto Legacy Integral Field Area (CALIFA) DR3 integral-field-spectroscopy survey and complemented by Sloan Digital Sky Survey (SDSS) imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and interarm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar mass surface density, μ*, are typically older, μ* alone does not determine the stellar population age and a bimodal distribution is found at any fixed μ*. We identify an 'old ridge' of regions of age ˜9 Gyr, independent of μ*, and a 'young sequence' of regions with age increasing with μ* from 1-1.5 to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as μ* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star formation history is that (I) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and (II) the use of a single average age per region is unable to represent the full time extent of the star formation history of 'young sequence' regions.

[1]  D. Bizyaev,et al.  Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation , 2016, 1609.01740.

[2]  R. Terlevich,et al.  Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies , 2015, 1504.07010.

[3]  P. Sánchez-Blázquez Stellar populations of bulges at low redshift , 2015, 1503.08105.

[4]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[5]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[6]  L. Verde,et al.  The similar stellar populations of quiescent spiral and elliptical galaxies , 2011, 1109.5352.

[7]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[8]  Heidelberg,et al.  A multiscale approach to environment and its influence on the colour distribution of galaxies , 2010, 1004.2254.

[9]  M. Franx,et al.  THE EVOLVING RELATIONS BETWEEN SIZE, MASS, SURFACE DENSITY, AND STAR FORMATION IN 3 × 104 GALAXIES SINCE z = 2 , 2009, 0906.4786.

[10]  Stefano Zibetti Introducing ADAPTSMOOTH, a new code for the adaptive smoothing of astronomical images , 2009 .

[11]  Iap Paris,et al.  Resolved stellar mass maps of galaxies. I: method and implications for global mass estimates , 2009, 0904.4252.

[12]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[13]  J. Silk,et al.  The role of minor mergers in the recent star formation history of early-type galaxies , 2007, 0711.1493.

[14]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[15]  D. Erb Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A MODEL FOR STAR FORMATION, GAS FLOWS AND CHEMICAL EVOLUTION IN GALAXIES AT HIGH REDSHIFTS , 2022 .

[16]  Heidelberg,et al.  A census of metals and baryons in stars in the local universe , 2007, 0708.0533.

[17]  D. Thomas,et al.  Rejuvenation of spiral bulges , 2005, Proceedings of the International Astronomical Union.

[18]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[19]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[20]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[21]  M. Bershady,et al.  The Disk Mass project; science case for a new PMAS IFU module , 2003, astro-ph/0311555.

[22]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[23]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[24]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[25]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[26]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[27]  G. Gavazzi,et al.  Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History , 2002 .

[28]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[29]  E. Bell,et al.  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  R. Wyse,et al.  Galactic Bulges , 1997, astro-ph/9701223.

[32]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .