Bayes computation for life testing and reliability estimation

Powerful computational techniques for estimating the parameters and the reliability function of complex life distributions, using Bayes methods, from complete and type-II censored samples are given. The Gibbs sampler approach brings considerable conceptual and computational simplicity to the calculation of the posterior marginals and reliability. Considering constrained parameter and truncated data problems in multivariate life distributions, the Gibbs sampler procedure is easy to implement for sets of simulated data. >

[1]  T. Nayak Multivariate Lomax distribution: properties and usefulness in reliability theory , 1987, Journal of Applied Probability.

[2]  R. Soland Bayesian Analysis of the Weibull Process With Unknown Scale and Shape Parameters , 1969 .

[3]  M. S. Holla,et al.  BAYESIAN ESTIMATES OF THE RELIABILITY FUNCTION , 1966 .

[4]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[5]  A. Basu Estimates of Reliability for Some Distributions Useful in Life Testing , 1964 .

[6]  D. Dey Estimation of scale parameters in mixture distributions , 1990 .

[7]  S. K. Bhattacharya,et al.  Bayesian Approach to Life Testing and Reliability Estimation , 1967 .

[8]  H. Martz Bayesian reliability analysis , 1982 .

[9]  S. Varde Life Testing and Reliability Estimation for the Two Parameter Exponential Distribution , 1969 .

[10]  D. Lindley,et al.  Multivariate distributions for the life lengths of components of a system sharing a common environment , 1986, Journal of Applied Probability.

[11]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[12]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Albert H. Moore,et al.  Bayesian Estimation of Parameters of Life Distributions and Reliability from Type II Censored Samples , 1978, IEEE Transactions on Reliability.

[15]  L. Devroye Non-Uniform Random Variate Generation , 1986 .