Distributions of linear functionals of two parameter Poisson-Dirichlet random measures.

The present paper provides exact expressions for the probability distributions of linear functionals of the two-parameter Poisson--Dirichlet process $\operatorname {PD}(\alpha,\theta)$. We obtain distributional results yielding exact forms for density functions of these functionals. Moreover, several interesting integral identities are obtained by exploiting a correspondence between the mean of a Poisson--Dirichlet process and the mean of a suitable Dirichlet process. Finally, some distributional characterizations in terms of mixture representations are proved. The usefulness of the results contained in the paper is demonstrated by means of some illustrative examples. Indeed, our formulae are relevant to occupation time phenomena connected with Brownian motion and more general Bessel processes, as well as to models arising in Bayesian nonparametric statistics.

[1]  P. Levy Sur certains processus stochastiques homogènes , 1940 .

[2]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[3]  D. Sumner An inversion formula for the generalized Stieltjes transform , 1949 .

[4]  John Lamperti,et al.  An occupation time theorem for a class of stochastic processes , 1958 .

[5]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[6]  Lokenath Debnath On certain integral transforms and their applications , 1964 .

[7]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[8]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[9]  J. Wellner,et al.  Oscillating Brownian motion , 1978, Journal of Applied Probability.

[10]  M. Wodzicki Lecture Notes in Math , 1984 .

[11]  Jim Pitman,et al.  Une extension multidimensionnelle de la loi de l'arc sinus , 1989 .

[12]  E. Regazzini,et al.  Distribution Functions of Means of a Dirichlet Process , 1990 .

[13]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[14]  Jim Pitman,et al.  Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .

[15]  E. Regazzini,et al.  Correction: Distribution Functions of Means of a Dirichlet Process , 1994 .

[16]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[17]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[18]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[19]  Jim Pitman,et al.  On the relative lengths of excursions derived from a stable subordinator , 1997 .

[20]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[21]  J. Pitman Coalescents with multiple collisions , 1999 .

[22]  M. Yor,et al.  Abel transform and integrals of Bessel local times , 1999 .

[23]  Eugenio Melilli,et al.  Some new results for dirichlet priors , 2000 .

[24]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[25]  E. Regazzini,et al.  Theory and numerical analysis for exact distributions of functionals of a Dirichlet process , 2002 .

[26]  Stephen G. Walker,et al.  Perfect Simulation Involving Functionals of a Dirichlet Process , 2002 .

[27]  H. Ishwaran,et al.  DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .

[28]  Lancelot F. James,et al.  Poisson Process Partition Calculus with Applications to Exchangeable Models and Bayesian Nonparametrics , 2002 .

[29]  Matthew A. Carlton A family of densities derived from the three-parameter Dirichlet process , 2002, Journal of Applied Probability.

[30]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[31]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[32]  Jim Pitman,et al.  The two-parameter generalization of Ewens' random partition structure , 2003 .

[33]  Lancelot F. James,et al.  Generalized weighted Chinese restaurant processes for species sampling mixture models , 2003 .

[34]  Means of a Dirichlet process and multiple hypergeometric functions , 2004, math/0410151.

[35]  S. Kerov,et al.  The Markov–Krein Correspondence in Several Dimensions , 2004 .

[36]  M. Yor,et al.  On the Markov–Krein Identity and Quasi-Invariance of the Gamma Process , 2004 .

[37]  N. Hjort,et al.  Exact Inference for Random Dirichlet Means , 2005 .

[39]  The generalized Stieltjes transform and its inverse , 2004, math-ph/0405050.

[40]  Lancelot F. James Functionals of dirichlet processes, the cifarelli-regazzini identity and beta-gamma processes , 2005, math/0505606.

[41]  Lancelot F. James Laws and Likelihoods for Ornstein Uhlenbeck-Gamma and other BNS OU Stochastic Volatilty models with extensions , 2006, math/0604086.

[42]  Jean Bertoin,et al.  Random fragmentation and coagulation processes , 2006 .

[43]  J. Pitman,et al.  Two Recursive Decompositions of Brownian Bridge Related to the Asymptotics of Random Mappings , 2006 .

[44]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[45]  J. Pitman,et al.  Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models , 2006, math/0604350.

[46]  G. Peccati Multiple integral representation for functionals of Dirichlet processes , 2008, 0803.1029.