Application of Catabolic-Based Biosensors to Develop QSARs for Degradation

[1]  W. Klein,et al.  Predictive QSAR models for estimating biodegradation of aromatic compounds. , 1991, The Science of the total environment.

[2]  J. Koča,et al.  Molecular orbital calculations to describe microbial reductive dechlorination of polychlorinated dioxins , 1998 .

[3]  Structure‐toxicity assessment of metabolites of the aerobic bacterial transformation of substituted naphthalenes , 2000 .

[4]  T W Schultz,et al.  Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols. , 1997, Chemosphere.

[5]  G. Sayler,et al.  A Chromosomally Based tod-luxCDABEWhole-Cell Reporter for Benzene, Toluene, Ethybenzene, and Xylene (BTEX) Sensing , 1998, Applied and Environmental Microbiology.

[6]  R. Atlas,et al.  Hydrocarbon Biodegradation and Oil Spill Bioremediation , 1992 .

[7]  G. Gottschalk,et al.  Construction and Use of an ipb DNA Module To Generate Pseudomonas Strains with Constitutive Trichloroethene and Isopropylbenzene Oxidation Activity , 1998, Applied and Environmental Microbiology.

[8]  G. Sayler,et al.  Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation , 1990, Science.

[9]  G. Sayler,et al.  NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids , 1993, Applied and environmental microbiology.

[10]  B. Yoon,et al.  Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes , 2000, Journal of Industrial Microbiology and Biotechnology.

[11]  M. Muccini,et al.  Construction of a Bioluminescent Reporter Strain To Detect Polychlorinated Biphenyls , 1998, Applied and Environmental Microbiology.

[12]  Gary S. Sayler,et al.  Induction of the tod Operon by Trichloroethylene in Pseudomonas putida TVA8 , 1998, Applied and Environmental Microbiology.

[13]  D. Gibson,et al.  Toluene dioxygenase: a multicomponent enzyme system. , 1977, Biochemical and biophysical research communications.

[14]  M Aizawa,et al.  Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. , 1997, Analytical chemistry.

[15]  E. Meighen Enzymes and Genes from the lux Operons of Bioluminescent Bacteria , 1988 .

[16]  R. Burlage,et al.  Bioluminescent sensors for detection of bioavailable Hg(II) in the environment , 1993, Applied and environmental microbiology.

[17]  G. Belfort,et al.  Construction and evaluation of a metal ion biosensor , 1993, Biotechnology and bioengineering.

[18]  M. Wubbolts,et al.  Genetics of alkane oxidation byPseudomonas oleovorans , 1994, Biodegradation.

[19]  K. Timmis,et al.  Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204 , 1986, Journal of bacteriology.

[20]  G. Sheldrake,et al.  THE DIOXYGENASE-CATALYSED FORMATION OF VICINAL CIS-DIOLS , 1998 .

[21]  J. R. van der Meer,et al.  Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples , 1997, Applied and environmental microbiology.

[22]  W. Meylan,et al.  Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base. , 1991, The Science of the total environment.

[23]  H. D. Stensel,et al.  A QSAR-based biodegradability model—A QSBR , 1996 .

[24]  G. Sayler,et al.  Observations on the preferential biodegradation of selected components of polyaromatic hydrocarbon mixtures. , 2001, Chemosphere.

[25]  Paul Keim,et al.  Development and Testing of a Bacterial Biosensor for Toluene-Based Environmental Contaminants , 1998, Applied and Environmental Microbiology.

[26]  T. Omori,et al.  Cloning, nucleotide sequence, and characterization of the genes encoding enzymes involved in the degradation of cumene to 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid in Pseudomonas fluorescens IP01 , 1996 .

[27]  D. Gibson,et al.  Aromatic hydrocarbon degradation: a molecular approach. , 1991, Genetic engineering.

[28]  P. Williams,et al.  The evolution of pathways for aromatic hydrocarbon oxidation inPseudomonas , 1994, Biodegradation.

[29]  M. Winson,et al.  The construction and application of a lux‐based nitrate biosensor , 1997, Letters in applied microbiology.

[30]  R Brousseau,et al.  A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Gibson,et al.  Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. , 1970, Biochemistry.

[32]  Shimshon Belkin,et al.  A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants , 1997 .

[33]  O. Nybroe,et al.  Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation , 1995 .

[34]  R. Brousseau,et al.  Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1 , 1995, Molecular and General Genetics MGG.

[35]  R. Lipnick Outliers: their origin and use in the classification of molecular mechanisms of toxicity. , 1991, The Science of the total environment.

[36]  Gary S. Sayler,et al.  Specific and Quantitative Assessment of Naphthalene and Salicylate Bioavailability by Using a Bioluminescent Catabolic Reporter Bacterium , 1992, Applied and environmental microbiology.

[37]  R W Eaton,et al.  Use of an ipb-lux Fusion To Study Regulation of the Isopropylbenzene Catabolism Operon of Pseudomonas putida RE204 and To Detect Hydrophobic Pollutants in the Environment , 1996, Applied and environmental microbiology.

[38]  G. Sayler,et al.  Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene , 1993, Applied and environmental microbiology.

[39]  K. Timmis,et al.  Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway , 1989, Journal of bacteriology.