Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

[1]  K. Hertz Design guide , 2019, Design of Fire-resistant Concrete Structures.

[2]  O. Kraft,et al.  Approaching theoretical strength in glassy carbon nanolattices. , 2016, Nature materials.

[3]  J. Greer,et al.  Materials by design: Using architecture in material design to reach new property spaces , 2015 .

[4]  J. J. do Rosário,et al.  Self‐Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals , 2015 .

[5]  K. Bertoldi,et al.  Honeycomb phononic crystals with self-similar hierarchy , 2015 .

[6]  K. Bertoldi,et al.  Three-dimensional adaptive soft phononic crystals , 2015 .

[7]  H. Wadley,et al.  Mechanical response of Ti–6Al–4V octet-truss lattice structures , 2015 .

[8]  H. Wadley,et al.  Hybrid carbon fiber composite lattice truss structures , 2014 .

[9]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[10]  Frank Greer,et al.  Fabrication and deformation of three-dimensional hollow ceramic nanostructures. , 2013, Nature materials.

[11]  Julia R. Greer,et al.  Protocols for the Optimal Design of Multi‐Functional Cellular Structures: From Hypersonics to Micro‐Architected Materials , 2011 .

[12]  Michael F. Ashby,et al.  Hybrid Materials to Expand the Boundaries of Material‐Property Space , 2011 .

[13]  A. Evans,et al.  Optimization of Thermal Protection Systems Utilizing Sandwich Structures with Low Coefficient of Thermal Expansion Lattice Hot Faces , 2011 .

[14]  H. Wadley,et al.  Titanium Alloy Lattice Structures with Millimeter Scale Cell Sizes , 2010 .

[15]  M. Ashby,et al.  Cellular Materials in Nature and Medicine , 2010 .

[16]  Mary C. Boyce,et al.  Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations , 2008 .

[17]  M. Durand,et al.  Stiffest elastic networks , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  K. Bertoldi,et al.  Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures , 2008 .

[19]  H. Wadley Multifunctional periodic cellular metals , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Frank W. Zok,et al.  A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores , 2004 .

[21]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[22]  Mary C. Boyce,et al.  Three-dimensional micromechanical modeling of voided polymeric materials , 2002 .

[23]  M. Ashby,et al.  Effective properties of the octet-truss lattice material , 2001 .

[24]  E. Garboczi,et al.  Elastic moduli of model random three-dimensional closed-cell cellular solids , 2000, cond-mat/0009004.

[25]  J. Grenestedt Effective elastic behavior of some models for perfect cellular solids , 1999 .

[26]  Lorna J. Gibson,et al.  Modelling the mechanical behavior of cellular materials , 1989 .

[27]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[28]  William Thomson On the division of space with minimum partitional area , 1887 .

[29]  Marina Bosch,et al.  Metal Foams A Design Guide , 2016 .

[30]  J. Lima-De-Faria,et al.  Structure and properties , 1994 .