Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients

Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

[1]  Xiaodong Wu,et al.  Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search , 2008, IEEE Transactions on Medical Imaging.

[2]  David Huang,et al.  Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.

[3]  F. Horn,et al.  Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT , 2010, Journal of glaucoma.

[4]  U. Schmidt-Erfurth,et al.  Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. , 2008, Optics express.

[5]  Boris Hermann,et al.  Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. , 2010, Optics express.

[6]  Kim L. Boyer,et al.  Retinal thickness measurements from optical coherence tomography using a Markov boundary model , 2001, IEEE Transactions on Medical Imaging.

[7]  Carmen A Puliafito,et al.  Automated detection of retinal layer structures on optical coherence tomography images. , 2005, Optics express.

[8]  D. Hood,et al.  Blood Vessel Contributions to Retinal Nerve Fiber Layer Thickness Profiles Measured With Optical Coherence Tomography , 2008, Journal of glaucoma.

[9]  A. Ferreras,et al.  Retinal Nerve Fiber Layer Evaluation in Open-Angle Glaucoma , 2008, Ophthalmologica.

[10]  Teresa C. Chen,et al.  Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.

[11]  Hans G. Lemij,et al.  Automated Retinal and NFL Segmentation in OCT Volume Scans by Pixel Classification , 2010 .

[12]  Anna Szkulmowska,et al.  Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. , 2007, Journal of biomedical optics.

[13]  R. Klein,et al.  Prevalence of glaucoma. The Beaver Dam Eye Study. , 1992, Ophthalmology (Rochester, Minn.).

[14]  Hiroshi Ishikawa,et al.  Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[15]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[16]  J G Fujimoto,et al.  A new quality assessment parameter for optical coherence tomography , 2006, British Journal of Ophthalmology.

[17]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[18]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[19]  Ghassan Hamarneh,et al.  Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach , 2009, MICCAI.

[20]  M. Shahidi,et al.  Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. , 2005, American journal of ophthalmology.

[21]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Bernd Hamann,et al.  Segmentation of Three-dimensional Retinal Image Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Christian Y Mardin,et al.  Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. , 2009, Investigative ophthalmology & visual science.

[24]  Milan Sonka,et al.  Segmentation of the Surfaces of the Retinal Layer from OCT Images , 2006, MICCAI.

[25]  Milan Sonka,et al.  Three-Dimensional Analysis of Retinal Layer Texture: Identification of Fluid-Filled Regions in SD-OCT of the Macula , 2010, IEEE Transactions on Medical Imaging.

[26]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[27]  M. Baroni,et al.  Towards quantitative analysis of retinal features in optical coherence tomography. , 2007, Medical engineering & physics.

[28]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[29]  J. Schmitt,et al.  Speckle in optical coherence tomography. , 1999, Journal of biomedical optics.

[30]  Gábor Márk Somfai,et al.  Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. , 2007, Journal of biomedical optics.

[31]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[32]  Ziqiang Wu,et al.  Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. , 2007, Investigative ophthalmology & visual science.

[33]  J. D. Cascajosa,et al.  Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography , 2010 .

[34]  Paul G. Updike,et al.  Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration. , 2007, Investigative ophthalmology & visual science.

[35]  Alexander Wong,et al.  Intra-retinal layer segmentation in optical coherence tomography images. , 2009, Optics express.

[36]  Robert Ritch,et al.  A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT). , 2009, Optics express.

[37]  Anthony J Correnti,et al.  Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.