Matching construction and demolition waste supply to recycling demand: a regional management chain model

Construction and demolition (C&D) waste can be either directly disposed in landfills or processed in recycling plants as aggregates. Depending upon its physical properties, this recycled waste can be used in a variety of construction applications and also reduce dependence on natural aggregates. Since the recycling of C&D waste reduces landfill and conserves natural aggregate resources, most environmental policies aim at increasing C&D recycling. An optimization model is presented to understand the dynamics and planning of a C&D waste recycling network as an integrated set of supply-and-demand chains at the regional level. The model optimizes for minimum costs, includes assessment of technical and environmental performance, and shows the effects of potential policy interventions. A case study using the model revealed that disposal taxes are a cost-effective lever to increase total recycling, but not necessarily high-quality recycling. Increased transport costs reduce the recycling rate considerably, as recycling requires longer transport distances than disposal. The expected strong increase in the supply of C&D waste associated with the population decline (and associated shrinkage) projected for 2050 in Germany requires new sinks, e.g. intensified use of recycled aggregates in concrete, to preserve current high recycling rates. Les déchets de construction et de démolition (C&D) peuvent être directement éliminés dans des décharges ou bien traités dans des usines de recyclage sous forme de granulats. En fonction de leurs propriétés physiques, ces déchets recyclés peuvent être utilisés dans une variété d'applications de construction et réduisent également la dépendance à l'égard des granulats naturels. Etant donné que le recyclage des déchets C&D réduit l'enfouissement en décharge et préserve les ressources en granulats naturels, la plupart des politiques environnementales visent à accroître le recyclage des déchets C&D. Un modèle d'optimisation est présenté pour comprendre la dynamique et la planification d'un réseau de recyclage de déchets C&D comme étant un ensemble intégré des chaînes de l'offre et de la demande au niveau régional. Ce modèle est optimisé pour l'obtention de coûts minima, comprend une évaluation des performances techniques et environnementales, et montre les effets des possibles interventions politiques. Une étude de cas utilisant ce modèle a révélé que les taxes d'élimination sont un levier de rentabilité permettant d'accroître le recyclage total, mais pas nécessairement un recyclage de haute qualité. L'accroissement des frais de transport réduit considérablement le taux de recyclage, dans la mesure où le recyclage exige des distances de transport plus longues que l'élimination en décharge. Le fort accroissement prévu de l'offre en déchets de construction et de démolition, associé au déclin de la population (et à la décroissance liée) projeté pour 2050 en Allemagne, nécessite de nouveaux modes de séquestration des déchets, par exemple une utilisation renforcée de granulats recyclés dans le béton, afin de préserver les taux élevés actuels de recyclage. Mots clés: déchets de construction et de démolition, gestion de la demande, flux de masse, déclin de la population, réseau de recyclage, gestion des déchets

[1]  Vivian W Y Tam,et al.  Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry. , 2010, Waste management.

[2]  Y. H. Yu,et al.  Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan , 2003 .

[3]  Gordana Petkovic,et al.  Environmental impact from the use of recycled materials in road construction: method for decision-making in Norway , 2004 .

[4]  Andrew Dawson,et al.  Utilisation of aggregate materials in road construction and bulk fill , 2001 .

[5]  Nik.D. Oikonomou,et al.  Recycled concrete aggregates , 2005 .

[6]  Weisheng Lu,et al.  A model for cost-benefit analysis of construction and demolition waste management throughout the waste chain , 2011 .

[7]  Amnon Katz,et al.  A novel methodology to estimate the evolution of construction waste in construction sites. , 2011, Waste management.

[8]  Jacques Méhu,et al.  Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. , 2009, Waste management.

[9]  M. El-Fadel,et al.  An optimisation model for regional integrated solid waste management II. Model application and sensitivity analyses , 2002, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[10]  Nabil Kartam,et al.  Environmental management of construction and demolition waste in Kuwait. , 2004, Waste management.

[11]  R. Cook The Population Reference Bureau , 1953 .

[12]  Dimitris Kaliampakos,et al.  European aggregates production: Drivers, correlations and trends , 2010 .

[13]  Timothy Townsend,et al.  Estimation of regional building-related C&D debris generation and composition: case study for Florida, US. , 2007, Waste management.

[14]  Vivian W. Y Tam,et al.  Economic comparison of concrete recycling : a case study approach , 2008 .

[15]  Gilpin R. Robinson,et al.  Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA , 2004 .

[16]  R. Bohne,et al.  Projection of Construction and Demolition Waste in Norway , 2007 .

[17]  S. Kenai,et al.  The use of coarse and fine crushed bricks as aggregate in concrete , 2008 .

[18]  Jaime Solís-Guzmán,et al.  A Spanish model for quantification and management of construction waste. , 2009, Waste management.

[19]  Bernadette O’Regan,et al.  A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland , 2006 .

[20]  Alan Meier,et al.  Energy impacts of recycling disassembly material in residential buildings. , 2001 .

[21]  K.M. Cochran,et al.  Estimating construction and demolition debris generation using a materials flow analysis approach. , 2010, Waste management.

[22]  Nicolas Moussiopoulos,et al.  Assessing multiple criteria for the optimal location of a construction and demolition waste management facility , 2010 .

[23]  Defne Apul,et al.  A life cycle based environmental impacts assessment of construction materials used in road construction , 2010 .

[24]  Rawshan Ara Begum,et al.  A benefit–cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia , 2006 .

[25]  Giovanni Andrea Blengini,et al.  Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy , 2009 .

[26]  Cecília Gravina da Rocha,et al.  A discussion on the reuse of building components in Brazil: An analysis of major social, economical and legal factors , 2009 .

[27]  Xuping Li,et al.  Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete , 2008 .

[28]  Chi Ming Tam,et al.  A review on the viable technology for construction waste recycling , 2006 .

[29]  Rolf AndrBohne,et al.  Dynamic Eco-Efficiency Projections for Construction and Demolition Waste Recycling Strategies at the City Level , 2008 .

[30]  Vivian W. Y Tam,et al.  Comparing the implementation of concrete recycling in the Australian and Japanese construction industries , 2009 .

[31]  Paul H. Brunner,et al.  Material Balance of a Construction Waste Sorting Plant , 1993 .

[32]  Ni-Bin Chang,et al.  Recycling of construction and demolition waste via a mechanical sorting process , 2002 .

[33]  Almir Sales,et al.  Concretes and mortars recycled with water treatment sludge and construction and demolition rubble , 2009 .

[34]  Guo H. Huang,et al.  An integrated optimization approach and multi-criteria decision analysis for supporting the waste-management system of the City of Beijing, China , 2010, Eng. Appl. Artif. Intell..

[35]  V. Corinaldesi,et al.  Recycling of rubble from building demolition for low-shrinkage concretes. , 2010, Waste management.

[36]  Gilpin R. Robinson,et al.  A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features , 2004 .

[37]  P. Serna,et al.  Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. , 2009, Waste management.

[38]  Vera Susanne Rotter,et al.  Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing , 2010 .

[39]  Frank Schultmann,et al.  Energy-oriented deconstruction and recovery planning , 2007 .

[40]  Gian Andrea Blengini,et al.  Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix , 2010 .

[41]  S Marinković,et al.  Comparative environmental assessment of natural and recycled aggregate concrete. , 2010, Waste management.

[42]  Chi Ming Tam,et al.  Crushed aggregate production from centralized combined and individual waste sources in Hong Kong , 2007 .

[43]  Xuping Li,et al.  Recycling and reuse of waste concrete in China: Part II. Structural behaviour of recycled aggregate concrete and engineering applications , 2009 .

[44]  Bernd Susset,et al.  Leaching standards for mineral recycling materials--a harmonized regulatory concept for the upcoming German Recycling Decree. , 2011, Waste management.

[45]  Wai K. Chong,et al.  Understanding transportation energy and technical metabolism of construction waste recycling , 2010 .

[46]  Li He,et al.  An inexact reverse logistics model for municipal solid waste management systems. , 2011, Journal of environmental management.

[47]  I. Topcu,et al.  Using waste concrete as aggregate , 1995 .

[48]  Shabbir H Gheewala,et al.  Estimation of construction waste generation and management in Thailand. , 2009, Waste management.

[49]  Vivian W Y Tam,et al.  Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis. , 2008, Journal of hazardous materials.

[50]  Rommert Dekker,et al.  A two-level network for recycling sand: A case study , 1998, Eur. J. Oper. Res..

[51]  Catarina Thormark,et al.  Conservation of energy and natural resources by recycling building waste , 2001 .

[52]  Chi Sun Poon,et al.  The use of recycled aggregate in concrete in Hong Kong , 2007 .

[53]  C F Mahler,et al.  Evaluation of investments in recycling centres for construction and demolition wastes in Brazilian municipalities. , 2007, Waste management.

[54]  M Abou Najm,et al.  An optimisation model for regional integrated solid waste management I. Model formulation , 2002, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[55]  R. Bohne,et al.  Dynamic Eco-Efficiency Projections for Construction and Demolition Waste Recycling Strategies at the City Level , 2008 .

[56]  Roland W. Scholz,et al.  Expert-based scenarios for strategic waste and resource management planning—C&D waste recycling in the Canton of Zurich, Switzerland , 2009 .

[57]  M. Zamorano,et al.  Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08 , 2011 .

[58]  Mike G. Winter,et al.  Estimates of the quantities of recycled aggregates in Scotland , 2003 .

[59]  Frank Schultmann,et al.  Sustainable deconstruction of buildings , 2008 .

[60]  Clemens Deilmann,et al.  Housing stock shrinkage: vacancy and demolition trends in Germany , 2009 .