H-bonds in Crambin: Coherence in an alpha helix

We applied coherence analysis to molecular dynamics simulations of the plant protein crambin, a thionin storage protein found in Abyssinian cabbage. Coherence analysis was developed by engineers to identify linear interactions, without statistical assumptions. Coherence is greater than 0.9 between the displacement of oxygen and nitrogen atoms of H bonds in alpha helices for frequencies between 0.391 GHz and 5.08 GHz (corresponding reciprocally to times of 2.56 ns and 0.197 ns). These H bonds act much like a linear system. Unrelated atoms have uncorrelated motions and much smaller coherence, say 0.02. Groups of atoms (that form a layer of an alpha helix) were averaged and the coherence function of two groups was evaluated. Layers of the alpha helix form a linear system, suggesting that the harmonic analysis of classical molecular dynamics can successfully describe the allosteric interactions of the layers of an alpha helix.

[1]  R. Eisenberg Structural analysis of fluid flow in complex biological systems , 2023, Modeling and Artificial Intelligence in Ophthalmology.

[2]  G. Stoltz Error estimates and variance reduction for nonequilibrium stochastic dynamics , 2022, ArXiv.

[3]  A. Liwo,et al.  Origin of Correlations between Local Conformational States of Consecutive Amino Acid Residues and Their Role in Shaping Protein Structures and in Allostery , 2022, The journal of physical chemistry. B.

[4]  B. Kirchner,et al.  Cluster Analysis in Liquids: A Novel Tool in TRAVIS , 2022, J. Chem. Inf. Model..

[5]  B. Eisenberg Setting Boundaries for Statistical Mechanics , 2021, Molecules.

[6]  Neal Fairley,et al.  The Often-Overlooked Power of Summary Statistics in Exploratory Data Analysis: Comparison of Pattern Recognition Entropy (PRE) to Other Summary Statistics and Introduction of Divided Spectrum-PRE (DS-PRE) , 2021, J. Chem. Inf. Model..

[7]  Jérôme Antoni,et al.  Thresholded Multiple Coherence as a tool for source separation and denoising: Theory and aeroacoustic applications , 2021, Applied Acoustics.

[8]  Patrick Joseph Muldowney Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics , 2021 .

[9]  R. Eisenberg Thermostatics vs. Electrodynamics , 2020 .

[10]  Yasuteru Shigeta,et al.  Efficient Conformational Sampling of Collective Motions of Proteins with Principal Component Analysis-Based Parallel Cascade Selection Molecular Dynamics , 2020, J. Chem. Inf. Model..

[11]  B. Kirchner,et al.  TRAVIS-A free analyzer for trajectories from molecular simulation. , 2020, The Journal of chemical physics.

[12]  David D L Minh,et al.  Robosample: A rigid-body molecular simulation program based on robot mechanics. , 2020, Biochimica et biophysica acta. General subjects.

[13]  G. Hummer,et al.  Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure. , 2020, The Journal of chemical physics.

[14]  G. Hummer,et al.  Optimal estimates of self-diffusion coefficients from molecular dynamics simulations. , 2020, The Journal of chemical physics.

[15]  R. Eisenberg Electrodynamics Correlates Knock-on and Knock-off: Current is Spatially Uniform in Ion Channels. , 2020, 2002.09012.

[16]  Ben Adcock,et al.  The troublesome kernel: why deep learning for inverse problems is typically unstable , 2020, ArXiv.

[17]  Laura Orellana,et al.  Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier , 2019, Front. Mol. Biosci..

[18]  Jacob A Bauer,et al.  Normal Mode Analysis as a Routine Part of a Structural Investigation , 2019, Molecules.

[19]  Francesco Renna,et al.  On instabilities of deep learning in image reconstruction and the potential costs of AI , 2019, Proceedings of the National Academy of Sciences.

[20]  Jean-Charles Carvaillo,et al.  TTClust: A Versatile Molecular Simulation Trajectory Clustering Program with Graphical Summaries , 2018, J. Chem. Inf. Model..

[21]  Malcolm C. Smith,et al.  Electrical Network Synthesis: A Survey of Recent Work , 2018 .

[22]  B. Eisenberg Asking biological questions of physical systems: The device approach to emergent properties , 2018, Journal of Molecular Liquids.

[23]  David K. Ferry,et al.  An Introduction to Quantum Transport in Semiconductors , 2018 .

[24]  A. Onufriev,et al.  Accuracy limit of rigid 3-point water models. , 2016, The Journal of chemical physics.

[25]  R. Eisenberg Electrical Structure of Biological Cells and Tissues: impedance spectroscopy, stereology, and singular perturbation theory , 2015, 1511.01339.

[26]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[27]  Cecil W. Thomas Coherence Function in Noisy Linear System , 2015 .

[28]  Houman Owhadi,et al.  On the Brittleness of Bayesian Inference , 2013, SIAM Rev..

[29]  Isaac Amidror,et al.  Mastering the Discrete Fourier Transform in One, Two or Several Dimensions , 2013, Computational Imaging and Vision.

[30]  Giacomo Fiorin,et al.  Using collective variables to drive molecular dynamics simulations , 2013 .

[31]  A. Liwo Coarse graining: a tool for large-scale simulations or more? , 2013 .

[32]  Barbara Kirchner,et al.  Computing vibrational spectra from ab initio molecular dynamics. , 2013, Physical chemistry chemical physics : PCCP.

[33]  P. Muldowney A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration , 2012 .

[34]  T. Toh,et al.  The Kurzweil-Henstock theory of stochastic integration , 2012, Czechoslovak Mathematical Journal.

[35]  M. Mustyakimov,et al.  Room-temperature ultrahigh-resolution time-of-flight neutron and X-ray diffraction studies of H/D-exchanged crambin. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[36]  Leslie Glasser Solid-state energetics and electrostatics: Madelung constants and Madelung energies. , 2012, Inorganic chemistry.

[37]  Barbara Kirchner,et al.  TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories , 2011, Journal of Cheminformatics.

[38]  David C. Swanson,et al.  Signal Processing for Intelligent Sensor Systems with MATLAB : Signal Processing for Intelligent Sensor Systems with MATLAB , 2011 .

[39]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[40]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[41]  E. Weckert,et al.  Crystal structure of small protein crambin at 0.48 Å resolution. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[42]  Vijay S. Pande,et al.  OpenMM: A Hardware-Independent Framework for Molecular Simulations , 2010, Computing in Science & Engineering.

[43]  Z. Schuss Theory and Applications of Stochastic Processes: An Analytical Approach , 2009 .

[44]  A. Kossiakoff,et al.  Role of a salt bridge in the model protein crambin explored by chemical protein synthesis: X-ray structure of a unique protein analogue, [V15A]crambin-alpha-carboxamide. , 2009, Molecular bioSystems.

[45]  Kui Fu Chen,et al.  Against the long-range spectral leakage of the cosine window family , 2009, Comput. Phys. Commun..

[46]  Arvind Ramanathan,et al.  An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations , 2009, RECOMB.

[47]  Kankan Bhattacharya,et al.  Fundamentals of Molecular Spectroscopy , 2008 .

[48]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[49]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[50]  Yan Feng Li,et al.  Combining the Hanning windowed interpolated FFT in both directions , 2008, Comput. Phys. Commun..

[51]  Yan Feng Li,et al.  Eliminating the picket fence effect of the fast Fourier transform , 2008, Comput. Phys. Commun..

[52]  P. Meystre Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[53]  Harold Klee,et al.  Simulation of Dynamic Systems with MATLAB and Simulink , 2007 .

[54]  Oliver F. Lange,et al.  Can principal components yield a dimension reduced description of protein dynamics on long time scales? , 2006, The journal of physical chemistry. B.

[55]  D. ben-Avraham Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2006 .

[56]  O. Pongs,et al.  Two-Dimensional Solid-State NMR Applied to a Chimeric Potassium Channel , 2006, Journal of receptor and signal transduction research.

[57]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[58]  Toh Tin-Lam,et al.  On Ito-Kurzweil-Henstock Integral and Integration-by-Part Formula , 2005 .

[59]  M. Cardona Albert Einstein as the father of solid state physics , 2005, physics/0508237.

[60]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[61]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[62]  A. Friberg,et al.  Theory of partially coherent electromagnetic fields in the space-frequency domain. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[64]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[65]  C. Swartz,et al.  Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane , 2004 .

[66]  David Eisenberg,et al.  The discovery of the α-helix and β-sheet, the principal structural features of proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Wolf Unified theory of coherence and polarization of random electromagnetic beams , 2003 .

[68]  A. Friberg,et al.  Degree of coherence for electromagnetic fields. , 2003, Optics express.

[69]  J. Oncley Dielectric behavior and atomic structure of serum albumin. , 2002, Biophysical chemistry.

[70]  Mohammad A. Karim,et al.  Continuous Signals and Systems with MATLAB® , 2001 .

[71]  Benedict Leimkuhler,et al.  Integration Methods for Molecular Dynamics , 1996 .

[72]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[73]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[74]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[75]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[76]  Nicholas I. Fisher,et al.  On the Nonparametric Estimation of Covariance Functions , 1994 .

[77]  Timothy A. Davis,et al.  MATLAB Primer , 1994 .

[78]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[79]  K. Lutchen,et al.  Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics , 1992, IEEE Transactions on Biomedical Engineering.

[80]  A. Krall Applied Analysis , 1986 .

[81]  Brian E. Maki,et al.  Interpretation of the Coherence Function When Using Pseudorandom Inputs to Identify Nonlinear Systems , 1986, IEEE Transactions on Biomedical Engineering.

[82]  Aleksandr Petrovich Demchenko,et al.  Ultraviolet Spectroscopy of Proteins , 1986, 1987.

[83]  Jonathan M. Borwein,et al.  Convergence of lattice sums and Madelung’s constant , 1985 .

[84]  M. Karplus,et al.  Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[85]  G. Saridis Parameter estimation: Principles and problems , 1983, Proceedings of the IEEE.

[86]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[87]  R. Eisenberg Structural complexity, circuit models, and ion accumulation. , 1980, Federation proceedings.

[88]  R. Eisenberg,et al.  Measurement, modeling, and analysis of the linear electrical properties of cells. , 1977, Annals of the New York Academy of Sciences.

[89]  J. S. Bendat,et al.  Solutions for the multiple input/output poblem , 1976 .

[90]  C. J. Dodds,et al.  Partial coherence in multivariate random processes , 1975 .

[91]  G. Carter,et al.  Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing , 1973 .

[92]  Gabor C. Temes,et al.  The optimization of bandlimited systems , 1973 .

[93]  Peter D. Welch,et al.  The Fast Fourier Transform and Its Applications , 1969 .

[94]  J. Bendat,et al.  Measurement and Analysis of Random Data , 1968 .

[95]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[96]  L. Goddard Linear Differential Operators , 1962, Nature.

[97]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[99]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[100]  F. Diederich Electrons And Holes In Semiconductors With Applications To Transistor Electronics , 2016 .

[101]  Yvonne Feierabend,et al.  Synthesis Of Rc Networks , 2016 .

[102]  R. Eisenberg Impedance Measurement of the Electrical Structure of Skeletal Muscle , 2011 .

[103]  Julius S. Bendat,et al.  Random Data: Analysis and Measurement Procedures, Fourth Edition , 2010 .

[104]  Z. Jiang,et al.  Infrared Spectroscopy , 2022 .

[105]  D. Beveridge,et al.  Exploratory studies of ab initio protein structure prediction: Multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model , 2002, Proteins.

[106]  J S Bendat and A G Piersol Random Data Analysis and Measurement Procedures , 2000 .

[107]  C. Brooks Computer simulation of liquids , 1989 .

[108]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[109]  James A. Cadzow,et al.  Linear modeling and the coherence function , 1987, IEEE Trans. Acoust. Speech Signal Process..

[110]  R. Mathias Analysis of Membrane Properties Using Extrinsic Noise , 1984 .

[111]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[112]  R. Eisenberg,et al.  Structural analysis of electrical properties of cells and tissues. , 1980, Critical reviews in bioengineering.

[113]  J. W. Humberston Classical mechanics , 1980, Nature.

[114]  A. Zemanian,et al.  Infinite electrical networks , 1976, Proceedings of the IEEE.

[115]  K. Rao,et al.  Molecular Spectroscopy: Modern Research , 1972 .

[116]  Franklin Fa-Kun Kuo,et al.  Network analysis and synthesis , 1962 .

[117]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[118]  J. Ferry,et al.  THE MEASUREMENT OF DIELECTRIC PROPERTIES OF PROTEIN SOLUTIONS; A DISCUSSION OF METHODS AND INTERPRETATION , 1938 .

[119]  Murali M. Kolluri,et al.  Frequency response function estimation techniques and the corresponding coherence functions: A review and update , 2022 .