An algorithm for Mean Curvature Motion

We propose in this paper a new algorithm for computing the evolution by mean curvature of a hypersurface. Our algorithm is a variant of the variational approach of Almgren, Taylor and Wang~\cite{ATW}. We show that it approximates, as the time--step goes to zero, the generalized motion(in the sense of barriers or viscosity solutions). The results still hold for the Anisotropic Mean Curvature Motion, as long as the anisotropy is smooth.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[3]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[4]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[5]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[6]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[7]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[8]  Sigurd B. Angenent,et al.  Anisotropic motion of a phase interface. , 1991 .

[9]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[12]  Y. Giga,et al.  Geometric Evolution of Phase-Boundaries , 1992 .

[13]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[14]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[15]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[16]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[17]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[18]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[19]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[20]  R. Kohn,et al.  Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature , 2014, 1407.5942.

[21]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[22]  Y. Giga,et al.  A comparison theorem for crystalline evolution in the plane , 1994 .

[23]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[24]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[25]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[26]  Pedro M. Girao,et al.  Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature: approaches based on the object-oriented paradigm , 1995, 1407.5943.

[27]  Flat flow is motion by crystalline curvature for curves with crystalline energies , 1995 .

[28]  Maurizio Paolini,et al.  Errata corrige to the paper: Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature , 1995 .

[29]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[30]  B. Chow Elliptic and parabolic methods in geometry , 1996 .

[31]  R. Kohn,et al.  The Crystalline Algorithm for Computing Motion by Curvature , 1996 .

[32]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[33]  Barriers for a class of geometric evolution problems , 1997 .

[34]  M. Novaga,et al.  Minimal barriers for geometric evolutions , 1997 .

[35]  Maurizio Paolini,et al.  Numerical simulations of mean curvature flow in the presence of a nonconvex anisotropy , 1998 .

[36]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[37]  M. Novaga,et al.  Comparison results between minimal barriers and viscosity solutions for geometric evolutions , 1998 .

[38]  Y. Giga,et al.  On the dynamics of crystalline motions , 1998 .

[39]  G. Barles,et al.  A New Approach to Front Propagation Problems: Theory and Applications , 1998 .

[40]  U. Dini,et al.  Facet{breaking for Three{dimensional Crystals Evolving by Mean Curvature , 1998 .

[41]  F. Cao Partial differential equations and mathematical morphology , 1998 .

[42]  P. Souganidis,et al.  Threshold dynamics type approximation schemes for propagating fronts , 1999 .

[43]  M. Novaga,et al.  Facet-breaking for three-dimensional crystals evolving by mean curvature , 1999 .

[44]  Maurizio Paolini,et al.  Numerical simulation of crystalline curvature flow in 3D by interface diffusion , 2000 .

[45]  Some aspects of De Giorgi's barriers for geometric evolutions , 2000 .

[46]  M. Novaga,et al.  Approximation to driven motion by crystalline curvature in two dimensions , 2000 .

[47]  Y. Giga,et al.  Generalized Motion¶by Nonlocal Curvature in the Plane , 2000 .

[48]  Steven J. Ruuth,et al.  Convolution-Generated Motion and Generalized Huygens' Principles for Interface Motion , 2000, SIAM J. Appl. Math..

[49]  Fabiana Leoni,et al.  Convergence of an Approximation Scheme for Curvature-Dependent Motions of Sets , 2001, SIAM J. Numer. Anal..

[50]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[51]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[52]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .