Time finite element methods: A unified framework for numerical discretizations of ODEs

Abstract We present a unified framework for the numerical discretization of ODEs based on time finite element methods. We relate time finite element methods to Runge–Kutta methods with infinitely many stages. By means of the corresponding numerical quadrature, we establish the relation between time finite element methods and (partitioned) Runge–Kutta methods. We also provide order estimates and superconvergence of the corresponding numerical methods in use of the simplifying assumptions. We apply time finite methods to Hamiltonian systems and investigate the conservation of energy and symplectic structure for the resulting numerical discretizations. For Hamiltonian systems, we also construct new classes of symplectic integrators by combining different time finite element methods and verify the results by performing some numerical experiments.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  Donald A. French,et al.  Continuous finite element methods which preserve energy properties for nonlinear problems , 1990 .

[3]  汤琼,et al.  Continuous finite element methods for Hamiltonian systems , 2007 .

[4]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[5]  Isaac Fried,et al.  Finite-element analysis of time-dependent phenomena. , 1969 .

[6]  C. Bottasso A new look at finite elements in time: a variational interpretation of Runge-Kutta methods , 1997 .

[7]  Geng CONSTRUCTION OF HIGH ORDER SYMPLECTIC PRK METHODS , 1995 .

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[9]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[10]  John Argyris,et al.  Finite Elements in Time and Space , 1969, The Aeronautical Journal (1968).

[11]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[12]  William W. Hager,et al.  Discontinuous Galerkin methods for ordinary differential equations , 1981 .

[13]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .

[14]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[15]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[16]  David Cohen,et al.  Linear energy-preserving integrators for Poisson systems , 2011 .

[17]  Analisys of Hamiltonian Boundary Value Methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems , 2009 .

[18]  Shan Zhao,et al.  A unified discontinuous Galerkin framework for time integration , 2014, Mathematical methods in the applied sciences.

[19]  B. Hulme Discrete Galerkin and related one-step methods for ordinary differential equations , 1972 .

[20]  David I. McLaren,et al.  Bootstrapping discrete-gradient integral-preserving integrators to fourth order , 2009 .

[21]  Desmond J. Higham,et al.  On the Boundedness of Asymptotic Stability Regions for the Stochastic Theta Method , 2003 .

[22]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[23]  Donato Trigiante,et al.  The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..

[24]  F. Iavernaro,et al.  s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .

[25]  M. Borri,et al.  A general framework for interpreting time finite element formulations , 1993 .

[26]  P. Betsch,et al.  Inherently Energy Conserving Time Finite Elements for Classical Mechanics , 2000 .

[27]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[28]  Donato Trigiante,et al.  A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..

[29]  Kang Deng,et al.  Superconvergence of a discontinuous finite element method for a nonlinear ordinary differential equation , 2010, Appl. Math. Comput..

[30]  Geng,et al.  A SIMPLE WAY CONSTRUCTING SYMPLECTICRUNGE-KUTTA METHODS , 2000 .

[31]  John C. Butcher,et al.  Integration processes based on Radau quadrature formulas , 1964 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .