Cubature, Approximation, and Isotropy in the Hypercube

Algorithms that combat the curse of dimensionality take advantage of nonuniformity properties of the underlying functions, which may be rotational (e.g., grid alignment) or translational (e.g., near-singularities localized at certain points of the domain). The significance of such effects is explored for four different classes of algorithms: low-rank compression, quasi-Monte Carlo integration, sparse grids, and cubature. The exponentially pronounced computational consequences of the anisotropy of the hypercube are described, notably its mismatch with the isotropy of the set of multivariate polynomials of a fixed degree on which some cubature formulas are based, and it is observed that the tensor product Gauss quadrature rule in $[-1,1]^d$ requires up to $(\pi/2)^d$ times fewer points if it is transformed to a nonpolynomial basis.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  A. Brandt Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .

[3]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[4]  Lloyd N. Trefethen,et al.  An Extension of Chebfun to Two Dimensions , 2013, SIAM J. Sci. Comput..

[5]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[8]  Michael Griebel,et al.  Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .

[9]  Marco Vianello,et al.  Trivariate Polynomial Approximation on Lissajous Curves , 2015 .

[10]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[11]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .

[12]  Keith O. Geddes,et al.  Hybrid symbolic-numeric integration in multiple dimensions via tensor-product series , 2005, ISSAC '05.

[13]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[14]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[15]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[16]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[17]  M. Griebel,et al.  Sparse grids for the Schrödinger equation , 2007 .

[18]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[19]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[20]  Sertac Karaman,et al.  A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.

[21]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[22]  Maria Tchernychova Carathéodory cubature measures , 2015 .

[23]  Lloyd N. Trefethen,et al.  New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..

[24]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[25]  Lloyd N. Trefethen,et al.  Gaussian elimination as an iterative algorithm , 2013 .

[26]  D. Gleich TRUST REGION METHODS , 2017 .

[27]  Ronald Cools,et al.  Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function , 2011 .

[28]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[29]  Henryk Wozniakowski,et al.  Approximation of infinitely differentiable multivariate functions is intractable , 2009, J. Complex..

[30]  Winfried Sickel,et al.  Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.

[31]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[32]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[33]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[34]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[35]  Christoph W. Ueberhuber,et al.  Computational Integration , 2018, An Introduction to Scientific, Symbolic, and Graphical Computation.

[36]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[37]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[38]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[39]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[40]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[41]  Jaroslav Fowkes,et al.  Bayesian numerical analysis : global optimization and other applications , 2011 .

[42]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[43]  Alex Townsend,et al.  Continuous analogues of matrix factorizations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[45]  Shuhuang Xiang,et al.  On the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity , 2012, SIAM J. Numer. Anal..

[46]  Lloyd N. Trefethen,et al.  Chebfun in Three Dimensions , 2017, SIAM J. Sci. Comput..

[47]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[48]  Hans-Joachim Bungartz,et al.  A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..

[49]  A. J. Wathen,et al.  Preconditioning , 2015, Acta Numerica.

[50]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[51]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[52]  James Clerk Maxwell,et al.  On Approximate Multiple Integration between Limits by Summation , 2011 .

[53]  Wolfgang Dahmen,et al.  Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations , 2014, Found. Comput. Math..

[54]  A. W. Wymore,et al.  Numerical Evaluation of Multiple Integrals I , 2010 .

[55]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[56]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[57]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[58]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[59]  M. Ledoux The concentration of measure phenomenon , 2001 .

[60]  Mario Bebendorf,et al.  Adaptive Cross Approximation of Multivariate Functions , 2011 .

[61]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[62]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.

[63]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .