The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

We introduce a suite of 30 cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code arepo, together with a comprehensive model for galaxy formation physics, including active galactic nuclei (AGN) feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two-component disc-dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scalelengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high-angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion on to the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.

[1]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[2]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[3]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[4]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[5]  P. Hopkins,et al.  The structure of the interstellar medium of star‐forming galaxies , 2011, 1110.4636.

[6]  J. Wadsley,et al.  A Superbubble Feedback Model for Galaxy Simulations , 2014, 1405.2625.

[7]  V. Springel,et al.  Feedback and the structure of simulated galaxies at redshift z=2 , 2010, 1004.5386.

[8]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[9]  J. Newman,et al.  On the evolution of the velocity–mass–size relations of disc-dominated galaxies over the past 10 billion years , 2010, 1006.3558.

[10]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[11]  Junichiro Makino,et al.  A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS , 2012, 1202.4277.

[12]  J. Schombert,et al.  WEIGHING GALAXY DISKS WITH THE BARYONIC TULLY–FISHER RELATION , 2015, 1501.06826.

[13]  R. Teyssier,et al.  The formation of disc galaxies in a ΛCDM universe , 2010, 1004.0005.

[14]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[15]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[16]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[17]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[18]  A. Jenkins,et al.  Second-order Lagrangian perturbation theory initial conditions for resimulations , 2009, 0910.0258.

[19]  J. Bailin,et al.  Cosmological galaxy formation simulations using smoothed particle hydrodynamics , 2010 .

[20]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[21]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[22]  Zurich,et al.  MaGICC thick disc - I. Comparing a simulated disc formed with stellar feedback to the Milky Way , 2013, 1301.5318.

[23]  T. Thompson,et al.  Numerical simulations of radiatively driven dusty winds , 2013, 1302.4440.

[24]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[25]  Daisuke Kawata,et al.  GCD+: a new chemodynamical approach to modelling supernovae and chemical enrichment in elliptical galaxies , 2003 .

[26]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[27]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[28]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[29]  U. Durham,et al.  How supernova explosions power galactic winds , 2012, 1211.1395.

[30]  O. Valenzuela,et al.  COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES , 2016, 1607.07917.

[31]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[32]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[33]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[34]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[35]  Mattia Fumagalli,et al.  THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCE z ∼ 1.3 , 2013, 1304.2395.

[36]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[37]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[38]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[39]  V. Springel,et al.  Zooming in on major mergers: dense, starbursting gas in cosmological simulations , 2016, 1604.08205.

[40]  V. Springel,et al.  Shaping the galaxy stellar mass function with supernova- and AGN-driven winds , 2012, 1205.2694.

[41]  D. Kawata Effects of Type II and Type Ia Supernovae Feedback on the Chemodynamical Evolution of Elliptical Galaxies , 2001, astro-ph/0105297.

[42]  P. Hopkins,et al.  Forward and backward galaxy evolution in comoving cumulative number density space , 2016, 1606.07271.

[43]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[44]  C. Dobbs,et al.  Testing hydrodynamics schemes in galaxy disc simulations , 2016, 1605.09792.

[45]  M. Steinmetz,et al.  ON THE ORIGIN OF THE ANGULAR MOMENTUM PROPERTIES OF GAS AND DARK MATTER IN GALACTIC HALOS AND ITS IMPLICATIONS , 2012, 1203.0315.

[46]  J. Gunn,et al.  Dissipational Galaxy Formation. I. Effects of Gasdynamics , 1991 .

[47]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[48]  J. Schaye,et al.  Simulating galactic outflows with thermal supernova feedback , 2012, 1203.5667.

[49]  E. Ostriker,et al.  GALAXY OUTFLOWS WITHOUT SUPERNOVAE , 2016, 1601.00659.

[50]  V. Springel,et al.  The formation of disc galaxies in high-resolution moving-mesh cosmological simulations , 2013, 1305.5360.

[51]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[52]  G. Stinson,et al.  NIHAO VI. The hidden discs of simulated galaxies , 2016, 1603.01703.

[53]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[54]  Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation , 2006, astro-ph/0601115.

[55]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[56]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[57]  T. Okamoto The origin of pseudo-bulges in cosmological simulations of galaxy formation , 2012, 1203.5372.

[58]  Effects of feedback on the morphology of galaxy discs , 2005, astro-ph/0503676.

[59]  Matthew A. Bershady,et al.  THE DISKMASS SURVEY. I. OVERVIEW , 2010, 1004.4816.

[60]  S. White,et al.  Warps and waves in the stellar discs of the Auriga cosmological simulations , 2016, 1606.06295.

[61]  Liverpool John Moores University,et al.  Bent by baryons: the low-mass galaxy-halo relation , 2014, 1404.3724.

[62]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[63]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[64]  T. Naab,et al.  The energy and momentum input of supernova explosions in structured and ionized molecular clouds , 2014, 1410.0011.

[65]  D. Gadotti Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: a Sloan Digital Sky Survey perspective , 2008, 0810.1953.

[66]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[67]  C. Simpson,et al.  Simulating cosmic ray physics on a moving mesh , 2016, 1604.07399.

[68]  R. Bower,et al.  The EAGLE simulations of galaxy formation: the importance of the hydrodynamics scheme , 2015, 1509.05056.

[69]  J. Silk,et al.  AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies , 2013, 1301.3092.

[70]  P. Hopkins,et al.  (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies , 2015, 1510.03869.

[71]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[72]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[73]  Cfa,et al.  The large-scale properties of simulated cosmological magnetic fields , 2015, 1506.00005.

[74]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[75]  Timothy D. Brandt,et al.  The delay-time distribution of Type Ia supernovae from Sloan II , 2012, 1206.0465.

[76]  G. Stinson,et al.  NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations , 2015, 1503.04818.

[77]  Making Galaxies in a Cosmological Context: The Need for Early Stellar Feedback , 2012, 1208.0002.

[78]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[79]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[80]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[81]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[82]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[83]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[84]  R. Teyssier,et al.  Baryonic and dark matter distribution in cosmological simulations of spiral galaxies , 2014, Monthly Notices of the Royal Astronomical Society.

[85]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[86]  S. White,et al.  Properties of H i discs in the Auriga cosmological simulations , 2016, 1610.01594.

[87]  Bingqiu Chen,et al.  The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution , 2016, 1604.01216.

[88]  R. Teyssier,et al.  A systematic look at the effects of radiative feedback on disc galaxy formation , 2013, 1308.6321.

[89]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): $\mathcal {M_\star }-R_{\rm e}$ relations of z = 0 bulges, discs and spheroids , 2016, 1607.01096.

[90]  C. Brook,et al.  INTERPRETING THE EVOLUTION OF THE SIZE–LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT , 2010, 1011.0432.

[91]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[92]  V. Springel,et al.  Vertical disc heating in Milky Way-sized galaxies in a cosmological context , 2015, 1512.02219.

[93]  Federico Marinacci,et al.  Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation , 2014, 1403.4934.

[94]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[95]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[96]  Durham,et al.  The properties of satellite galaxies in simulations of galaxy formation , 2009, 0909.0265.

[97]  V. Springel,et al.  Angular momentum properties of haloes and their baryon content in the Illustris simulation , 2016, 1608.01323.

[98]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[99]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[100]  S. White,et al.  A fully cosmological model of a Monoceros-like ring , 2015, 1509.08459.

[101]  A. Fabian,et al.  Fuelling quasars with hot gas , 1999, astro-ph/9908282.

[102]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[103]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[104]  Durham,et al.  Baryon effects on the internal structure of ΛCDM haloes in the EAGLE simulations , 2014, 1409.8617.

[105]  Thorsten Naab,et al.  Towards a more realistic population of bright spiral galaxies in cosmological simulations , 2013, 1304.1559.

[106]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[107]  A. Kravtsov,et al.  FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS , 2010, 1011.1252.

[108]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[109]  R. Wechsler,et al.  The Origin of Angular Momentum in Dark Matter Halos , 2001, astro-ph/0105349.

[110]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[111]  A. Jenkins A new way of setting the phases for cosmological multiscale Gaussian initial conditions. , 2013, 1306.5968.

[112]  Volker Springel,et al.  Improving the convergence properties of the moving-mesh code AREPO , 2015, 1503.00562.

[113]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[114]  A. Mezzacappa,et al.  Nuclear cross sections, nuclear structure and stellar nucleosynthesis , 2003 .